%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1998
%
Type - public interface
\begin{code}
module Type (
TyThing(..), Type, KindOrType, PredType, ThetaType,
Var, TyVar, isTyVar,
mkTyVarTy, mkTyVarTys, getTyVar, getTyVar_maybe,
mkAppTy, mkAppTys, splitAppTy, splitAppTys,
splitAppTy_maybe, repSplitAppTy_maybe,
mkFunTy, mkFunTys, splitFunTy, splitFunTy_maybe,
splitFunTys, splitFunTysN,
funResultTy, funArgTy, zipFunTys,
mkTyConApp, mkTyConTy,
tyConAppTyCon_maybe, tyConAppArgs_maybe, tyConAppTyCon, tyConAppArgs,
splitTyConApp_maybe, splitTyConApp, tyConAppArgN,
mkForAllTy, mkForAllTys, splitForAllTy_maybe, splitForAllTys,
mkPiKinds, mkPiType, mkPiTypes,
applyTy, applyTys, applyTysD, isForAllTy, dropForAlls,
mkNumLitTy, isNumLitTy,
mkStrLitTy, isStrLitTy,
coAxNthLHS,
newTyConInstRhs,
mkFamilyTyConApp,
isDictLikeTy,
mkEqPred, mkPrimEqPred, mkReprPrimEqPred,
mkClassPred,
noParenPred, isClassPred, isEqPred,
isIPPred, isIPPred_maybe, isIPTyCon, isIPClass,
PredTree(..), classifyPredType,
getClassPredTys, getClassPredTys_maybe,
getEqPredTys, getEqPredTys_maybe,
funTyCon,
isTypeVar, isKindVar,
isTyVarTy, isFunTy, isDictTy, isPredTy, isKindTy,
isUnLiftedType, isUnboxedTupleType, isAlgType, isClosedAlgType,
isPrimitiveType, isStrictType,
Kind, SimpleKind, MetaKindVar,
typeKind,
anyKind, liftedTypeKind, unliftedTypeKind, openTypeKind,
constraintKind, superKind,
liftedTypeKindTyCon, openTypeKindTyCon, unliftedTypeKindTyCon,
constraintKindTyCon, anyKindTyCon,
tyVarsOfType, tyVarsOfTypes,
expandTypeSynonyms,
typeSize, varSetElemsKvsFirst,
eqType, eqTypeX, eqTypes, cmpType, cmpTypes,
eqPred, eqPredX, cmpPred, eqKind, eqTyVarBndrs,
seqType, seqTypes,
coreView, tcView,
UnaryType, RepType(..), flattenRepType, repType,
typePrimRep, typeRepArity,
TvSubstEnv,
TvSubst(..),
emptyTvSubstEnv, emptyTvSubst,
mkTvSubst, mkOpenTvSubst, zipOpenTvSubst, zipTopTvSubst, mkTopTvSubst, notElemTvSubst,
getTvSubstEnv, setTvSubstEnv,
zapTvSubstEnv, getTvInScope,
extendTvInScope, extendTvInScopeList,
extendTvSubst, extendTvSubstList,
isInScope, composeTvSubst, zipTyEnv,
isEmptyTvSubst, unionTvSubst,
substTy, substTys, substTyWith, substTysWith, substTheta,
substTyVar, substTyVars, substTyVarBndr,
cloneTyVarBndr, deShadowTy, lookupTyVar,
substKiWith, substKisWith,
pprType, pprParendType, pprTypeApp, pprTyThingCategory, pprTyThing,
pprTvBndr, pprTvBndrs, pprForAll, pprSigmaType,
pprEqPred, pprTheta, pprThetaArrowTy, pprClassPred,
pprKind, pprParendKind, pprSourceTyCon,
tidyType, tidyTypes,
tidyOpenType, tidyOpenTypes,
tidyOpenKind,
tidyTyVarBndr, tidyTyVarBndrs, tidyFreeTyVars,
tidyOpenTyVar, tidyOpenTyVars,
tidyTyVarOcc,
tidyTopType,
tidyKind,
) where
#include "HsVersions.h"
import Kind
import TypeRep
import Var
import VarEnv
import VarSet
import Class
import TyCon
import TysPrim
import TysWiredIn ( eqTyCon, typeNatKind, typeSymbolKind )
import PrelNames ( eqTyConKey, ipClassNameKey, openTypeKindTyConKey,
constraintKindTyConKey, liftedTypeKindTyConKey )
import CoAxiom
import Unique ( Unique, hasKey )
import BasicTypes ( Arity, RepArity )
import StaticFlags
import Util
import Outputable
import FastString
import Data.List ( partition )
import Maybes ( orElse )
import Data.Maybe ( isJust )
import Control.Monad ( guard )
infixr 3 `mkFunTy`
\end{code}
\begin{code}
\end{code}
%************************************************************************
%* *
Type representation
%* *
%************************************************************************
\begin{code}
coreView :: Type -> Maybe Type
coreView (TyConApp tc tys) | Just (tenv, rhs, tys') <- coreExpandTyCon_maybe tc tys
= Just (mkAppTys (substTy (mkTopTvSubst tenv) rhs) tys')
coreView _ = Nothing
tcView :: Type -> Maybe Type
tcView (TyConApp tc tys) | Just (tenv, rhs, tys') <- tcExpandTyCon_maybe tc tys
= Just (mkAppTys (substTy (mkTopTvSubst tenv) rhs) tys')
tcView _ = Nothing
expandTypeSynonyms :: Type -> Type
expandTypeSynonyms ty
= go ty
where
go (TyConApp tc tys)
| Just (tenv, rhs, tys') <- tcExpandTyCon_maybe tc tys
= go (mkAppTys (substTy (mkTopTvSubst tenv) rhs) tys')
| otherwise
= TyConApp tc (map go tys)
go (LitTy l) = LitTy l
go (TyVarTy tv) = TyVarTy tv
go (AppTy t1 t2) = mkAppTy (go t1) (go t2)
go (FunTy t1 t2) = FunTy (go t1) (go t2)
go (ForAllTy tv t) = ForAllTy tv (go t)
\end{code}
%************************************************************************
%* *
\subsection{Constructor-specific functions}
%* *
%************************************************************************
---------------------------------------------------------------------
TyVarTy
~~~~~~~
\begin{code}
getTyVar :: String -> Type -> TyVar
getTyVar msg ty = case getTyVar_maybe ty of
Just tv -> tv
Nothing -> panic ("getTyVar: " ++ msg)
isTyVarTy :: Type -> Bool
isTyVarTy ty = isJust (getTyVar_maybe ty)
getTyVar_maybe :: Type -> Maybe TyVar
getTyVar_maybe ty | Just ty' <- coreView ty = getTyVar_maybe ty'
getTyVar_maybe (TyVarTy tv) = Just tv
getTyVar_maybe _ = Nothing
\end{code}
---------------------------------------------------------------------
AppTy
~~~~~
We need to be pretty careful with AppTy to make sure we obey the
invariant that a TyConApp is always visibly so. mkAppTy maintains the
invariant: use it.
\begin{code}
mkAppTy :: Type -> Type -> Type
mkAppTy (TyConApp tc tys) ty2 = mkTyConApp tc (tys ++ [ty2])
mkAppTy ty1 ty2 = AppTy ty1 ty2
mkAppTys :: Type -> [Type] -> Type
mkAppTys ty1 [] = ty1
mkAppTys (TyConApp tc tys1) tys2 = mkTyConApp tc (tys1 ++ tys2)
mkAppTys ty1 tys2 = foldl AppTy ty1 tys2
splitAppTy_maybe :: Type -> Maybe (Type, Type)
splitAppTy_maybe ty | Just ty' <- coreView ty
= splitAppTy_maybe ty'
splitAppTy_maybe ty = repSplitAppTy_maybe ty
repSplitAppTy_maybe :: Type -> Maybe (Type,Type)
repSplitAppTy_maybe (FunTy ty1 ty2) = Just (TyConApp funTyCon [ty1], ty2)
repSplitAppTy_maybe (AppTy ty1 ty2) = Just (ty1, ty2)
repSplitAppTy_maybe (TyConApp tc tys)
| isDecomposableTyCon tc || tys `lengthExceeds` tyConArity tc
, Just (tys', ty') <- snocView tys
= Just (TyConApp tc tys', ty')
repSplitAppTy_maybe _other = Nothing
splitAppTy :: Type -> (Type, Type)
splitAppTy ty = case splitAppTy_maybe ty of
Just pr -> pr
Nothing -> panic "splitAppTy"
splitAppTys :: Type -> (Type, [Type])
splitAppTys ty = split ty ty []
where
split orig_ty ty args | Just ty' <- coreView ty = split orig_ty ty' args
split _ (AppTy ty arg) args = split ty ty (arg:args)
split _ (TyConApp tc tc_args) args
= let
n | isDecomposableTyCon tc = 0
| otherwise = tyConArity tc
(tc_args1, tc_args2) = splitAt n tc_args
in
(TyConApp tc tc_args1, tc_args2 ++ args)
split _ (FunTy ty1 ty2) args = ASSERT( null args )
(TyConApp funTyCon [], [ty1,ty2])
split orig_ty _ args = (orig_ty, args)
\end{code}
LitTy
~~~~~
\begin{code}
mkNumLitTy :: Integer -> Type
mkNumLitTy n = LitTy (NumTyLit n)
isNumLitTy :: Type -> Maybe Integer
isNumLitTy ty | Just ty1 <- tcView ty = isNumLitTy ty1
isNumLitTy (LitTy (NumTyLit n)) = Just n
isNumLitTy _ = Nothing
mkStrLitTy :: FastString -> Type
mkStrLitTy s = LitTy (StrTyLit s)
isStrLitTy :: Type -> Maybe FastString
isStrLitTy ty | Just ty1 <- tcView ty = isStrLitTy ty1
isStrLitTy (LitTy (StrTyLit s)) = Just s
isStrLitTy _ = Nothing
\end{code}
---------------------------------------------------------------------
FunTy
~~~~~
\begin{code}
mkFunTy :: Type -> Type -> Type
mkFunTy arg res = FunTy arg res
mkFunTys :: [Type] -> Type -> Type
mkFunTys tys ty = foldr mkFunTy ty tys
isFunTy :: Type -> Bool
isFunTy ty = isJust (splitFunTy_maybe ty)
splitFunTy :: Type -> (Type, Type)
splitFunTy ty | Just ty' <- coreView ty = splitFunTy ty'
splitFunTy (FunTy arg res) = (arg, res)
splitFunTy other = pprPanic "splitFunTy" (ppr other)
splitFunTy_maybe :: Type -> Maybe (Type, Type)
splitFunTy_maybe ty | Just ty' <- coreView ty = splitFunTy_maybe ty'
splitFunTy_maybe (FunTy arg res) = Just (arg, res)
splitFunTy_maybe _ = Nothing
splitFunTys :: Type -> ([Type], Type)
splitFunTys ty = split [] ty ty
where
split args orig_ty ty | Just ty' <- coreView ty = split args orig_ty ty'
split args _ (FunTy arg res) = split (arg:args) res res
split args orig_ty _ = (reverse args, orig_ty)
splitFunTysN :: Int -> Type -> ([Type], Type)
splitFunTysN 0 ty = ([], ty)
splitFunTysN n ty = ASSERT2( isFunTy ty, int n <+> ppr ty )
case splitFunTy ty of { (arg, res) ->
case splitFunTysN (n1) res of { (args, res) ->
(arg:args, res) }}
zipFunTys :: Outputable a => [a] -> Type -> ([(a, Type)], Type)
zipFunTys orig_xs orig_ty = split [] orig_xs orig_ty orig_ty
where
split acc [] nty _ = (reverse acc, nty)
split acc xs nty ty
| Just ty' <- coreView ty = split acc xs nty ty'
split acc (x:xs) _ (FunTy arg res) = split ((x,arg):acc) xs res res
split _ _ _ _ = pprPanic "zipFunTys" (ppr orig_xs <+> ppr orig_ty)
funResultTy :: Type -> Type
funResultTy ty | Just ty' <- coreView ty = funResultTy ty'
funResultTy (FunTy _arg res) = res
funResultTy ty = pprPanic "funResultTy" (ppr ty)
funArgTy :: Type -> Type
funArgTy ty | Just ty' <- coreView ty = funArgTy ty'
funArgTy (FunTy arg _res) = arg
funArgTy ty = pprPanic "funArgTy" (ppr ty)
\end{code}
---------------------------------------------------------------------
TyConApp
~~~~~~~~
\begin{code}
mkTyConApp :: TyCon -> [Type] -> Type
mkTyConApp tycon tys
| isFunTyCon tycon, [ty1,ty2] <- tys
= FunTy ty1 ty2
| otherwise
= TyConApp tycon tys
tyConAppTyCon_maybe :: Type -> Maybe TyCon
tyConAppTyCon_maybe ty | Just ty' <- coreView ty = tyConAppTyCon_maybe ty'
tyConAppTyCon_maybe (TyConApp tc _) = Just tc
tyConAppTyCon_maybe (FunTy {}) = Just funTyCon
tyConAppTyCon_maybe _ = Nothing
tyConAppTyCon :: Type -> TyCon
tyConAppTyCon ty = tyConAppTyCon_maybe ty `orElse` pprPanic "tyConAppTyCon" (ppr ty)
tyConAppArgs_maybe :: Type -> Maybe [Type]
tyConAppArgs_maybe ty | Just ty' <- coreView ty = tyConAppArgs_maybe ty'
tyConAppArgs_maybe (TyConApp _ tys) = Just tys
tyConAppArgs_maybe (FunTy arg res) = Just [arg,res]
tyConAppArgs_maybe _ = Nothing
tyConAppArgs :: Type -> [Type]
tyConAppArgs ty = tyConAppArgs_maybe ty `orElse` pprPanic "tyConAppArgs" (ppr ty)
tyConAppArgN :: Int -> Type -> Type
tyConAppArgN n ty
= case tyConAppArgs_maybe ty of
Just tys -> ASSERT2( n < length tys, ppr n <+> ppr tys ) tys !! n
Nothing -> pprPanic "tyConAppArgN" (ppr n <+> ppr ty)
splitTyConApp :: Type -> (TyCon, [Type])
splitTyConApp ty = case splitTyConApp_maybe ty of
Just stuff -> stuff
Nothing -> pprPanic "splitTyConApp" (ppr ty)
splitTyConApp_maybe :: Type -> Maybe (TyCon, [Type])
splitTyConApp_maybe ty | Just ty' <- coreView ty = splitTyConApp_maybe ty'
splitTyConApp_maybe (TyConApp tc tys) = Just (tc, tys)
splitTyConApp_maybe (FunTy arg res) = Just (funTyCon, [arg,res])
splitTyConApp_maybe _ = Nothing
newTyConInstRhs :: TyCon -> [Type] -> Type
newTyConInstRhs tycon tys
= ASSERT2( equalLength tvs tys1, ppr tycon $$ ppr tys $$ ppr tvs )
mkAppTys (substTyWith tvs tys1 ty) tys2
where
(tvs, ty) = newTyConEtadRhs tycon
(tys1, tys2) = splitAtList tvs tys
\end{code}
---------------------------------------------------------------------
SynTy
~~~~~
Notes on type synonyms
~~~~~~~~~~~~~~~~~~~~~~
The various "split" functions (splitFunTy, splitRhoTy, splitForAllTy) try
to return type synonyms whereever possible. Thus
type Foo a = a -> a
we want
splitFunTys (a -> Foo a) = ([a], Foo a)
not ([a], a -> a)
The reason is that we then get better (shorter) type signatures in
interfaces. Notably this plays a role in tcTySigs in TcBinds.lhs.
Representation types
~~~~~~~~~~~~~~~~~~~~
Note [Nullary unboxed tuple]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We represent the nullary unboxed tuple as the unary (but void) type
State# RealWorld. The reason for this is that the ReprArity is never
less than the Arity (as it would otherwise be for a function type like
(# #) -> Int).
As a result, ReprArity is always strictly positive if Arity is. This
is important because it allows us to distinguish at runtime between a
thunk and a function takes a nullary unboxed tuple as an argument!
\begin{code}
type UnaryType = Type
data RepType = UbxTupleRep [UnaryType]
| UnaryRep UnaryType
flattenRepType :: RepType -> [UnaryType]
flattenRepType (UbxTupleRep tys) = tys
flattenRepType (UnaryRep ty) = [ty]
repType :: Type -> RepType
repType ty
= go initRecTc ty
where
go :: RecTcChecker -> Type -> RepType
go rec_nts ty
| Just ty' <- coreView ty
= go rec_nts ty'
go rec_nts (ForAllTy _ ty)
= go rec_nts ty
go rec_nts (TyConApp tc tys)
| isNewTyCon tc
, tys `lengthAtLeast` tyConArity tc
, Just rec_nts' <- checkRecTc rec_nts tc
= go rec_nts' (newTyConInstRhs tc tys)
| isUnboxedTupleTyCon tc
= if null tys
then UnaryRep realWorldStatePrimTy
else UbxTupleRep (concatMap (flattenRepType . go rec_nts) tys)
go _ ty = UnaryRep ty
typePrimRep :: UnaryType -> PrimRep
typePrimRep ty
= case repType ty of
UbxTupleRep _ -> pprPanic "typePrimRep: UbxTupleRep" (ppr ty)
UnaryRep rep -> case rep of
TyConApp tc _ -> tyConPrimRep tc
FunTy _ _ -> PtrRep
AppTy _ _ -> PtrRep
TyVarTy _ -> PtrRep
_ -> pprPanic "typePrimRep: UnaryRep" (ppr ty)
typeRepArity :: Arity -> Type -> RepArity
typeRepArity 0 _ = 0
typeRepArity n ty = case repType ty of
UnaryRep (FunTy ty1 ty2) -> length (flattenRepType (repType ty1)) + typeRepArity (n 1) ty2
_ -> pprPanic "typeRepArity: arity greater than type can handle" (ppr (n, ty))
\end{code}
Note [AppTy rep]
~~~~~~~~~~~~~~~~
Types of the form 'f a' must be of kind *, not #, so we are guaranteed
that they are represented by pointers. The reason is that f must have
kind (kk -> kk) and kk cannot be unlifted; see Note [The kind invariant]
in TypeRep.
---------------------------------------------------------------------
ForAllTy
~~~~~~~~
\begin{code}
mkForAllTy :: TyVar -> Type -> Type
mkForAllTy tyvar ty
= ForAllTy tyvar ty
mkForAllTys :: [TyVar] -> Type -> Type
mkForAllTys tyvars ty = foldr ForAllTy ty tyvars
mkPiKinds :: [TyVar] -> Kind -> Kind
mkPiKinds [] res = res
mkPiKinds (tv:tvs) res
| isKindVar tv = ForAllTy tv (mkPiKinds tvs res)
| otherwise = FunTy (tyVarKind tv) (mkPiKinds tvs res)
mkPiType :: Var -> Type -> Type
mkPiTypes :: [Var] -> Type -> Type
mkPiType v ty
| isId v = mkFunTy (varType v) ty
| otherwise = mkForAllTy v ty
mkPiTypes vs ty = foldr mkPiType ty vs
isForAllTy :: Type -> Bool
isForAllTy (ForAllTy _ _) = True
isForAllTy _ = False
splitForAllTy_maybe :: Type -> Maybe (TyVar, Type)
splitForAllTy_maybe ty = splitFAT_m ty
where
splitFAT_m ty | Just ty' <- coreView ty = splitFAT_m ty'
splitFAT_m (ForAllTy tyvar ty) = Just(tyvar, ty)
splitFAT_m _ = Nothing
splitForAllTys :: Type -> ([TyVar], Type)
splitForAllTys ty = split ty ty []
where
split orig_ty ty tvs | Just ty' <- coreView ty = split orig_ty ty' tvs
split _ (ForAllTy tv ty) tvs = split ty ty (tv:tvs)
split orig_ty _ tvs = (reverse tvs, orig_ty)
dropForAlls :: Type -> Type
dropForAlls ty = snd (splitForAllTys ty)
\end{code}
-- (mkPiType now in CoreUtils)
applyTy, applyTys
~~~~~~~~~~~~~~~~~
\begin{code}
applyTy :: Type -> KindOrType -> Type
applyTy ty arg | Just ty' <- coreView ty = applyTy ty' arg
applyTy (ForAllTy tv ty) arg = substTyWith [tv] [arg] ty
applyTy _ _ = panic "applyTy"
applyTys :: Type -> [KindOrType] -> Type
applyTys ty args = applyTysD empty ty args
applyTysD :: SDoc -> Type -> [Type] -> Type
applyTysD _ orig_fun_ty [] = orig_fun_ty
applyTysD doc orig_fun_ty arg_tys
| n_tvs == n_args
= substTyWith tvs arg_tys rho_ty
| n_tvs > n_args
= substTyWith (take n_args tvs) arg_tys
(mkForAllTys (drop n_args tvs) rho_ty)
| otherwise
= ASSERT2( n_tvs > 0, doc $$ ppr orig_fun_ty )
applyTysD doc (substTyWith tvs (take n_tvs arg_tys) rho_ty)
(drop n_tvs arg_tys)
where
(tvs, rho_ty) = splitForAllTys orig_fun_ty
n_tvs = length tvs
n_args = length arg_tys
\end{code}
%************************************************************************
%* *
Pred
%* *
%************************************************************************
Predicates on PredType
\begin{code}
noParenPred :: PredType -> Bool
noParenPred p = not (isIPPred p) && isClassPred p || isEqPred p
isPredTy :: Type -> Bool
isPredTy ty = go ty []
where
go :: Type -> [KindOrType] -> Bool
go (AppTy ty1 ty2) args = go ty1 (ty2 : args)
go (TyConApp tc tys) args = go_k (tyConKind tc) (tys ++ args)
go (TyVarTy tv) args = go_k (tyVarKind tv) args
go _ _ = False
go_k :: Kind -> [KindOrType] -> Bool
go_k k [] = isConstraintKind k
go_k (FunTy _ k1) (_ :args) = go_k k1 args
go_k (ForAllTy kv k1) (k2:args) = go_k (substKiWith [kv] [k2] k1) args
go_k _ _ = False
isKindTy :: Type -> Bool
isKindTy = isSuperKind . typeKind
isClassPred, isEqPred, isIPPred :: PredType -> Bool
isClassPred ty = case tyConAppTyCon_maybe ty of
Just tyCon | isClassTyCon tyCon -> True
_ -> False
isEqPred ty = case tyConAppTyCon_maybe ty of
Just tyCon -> tyCon `hasKey` eqTyConKey
_ -> False
isIPPred ty = case tyConAppTyCon_maybe ty of
Just tc -> isIPTyCon tc
_ -> False
isIPTyCon :: TyCon -> Bool
isIPTyCon tc = tc `hasKey` ipClassNameKey
isIPClass :: Class -> Bool
isIPClass cls = cls `hasKey` ipClassNameKey
isIPPred_maybe :: Type -> Maybe (FastString, Type)
isIPPred_maybe ty =
do (tc,[t1,t2]) <- splitTyConApp_maybe ty
guard (isIPTyCon tc)
x <- isStrLitTy t1
return (x,t2)
\end{code}
Make PredTypes
--------------------- Equality types ---------------------------------
\begin{code}
mkEqPred :: Type -> Type -> PredType
mkEqPred ty1 ty2
= WARN( not (k `eqKind` typeKind ty2), ppr ty1 $$ ppr ty2 $$ ppr k $$ ppr (typeKind ty2) )
TyConApp eqTyCon [k, ty1, ty2]
where
k = typeKind ty1
mkPrimEqPred :: Type -> Type -> Type
mkPrimEqPred ty1 ty2
= WARN( not (k `eqKind` typeKind ty2), ppr ty1 $$ ppr ty2 )
TyConApp eqPrimTyCon [k, ty1, ty2]
where
k = typeKind ty1
mkReprPrimEqPred :: Type -> Type -> Type
mkReprPrimEqPred ty1 ty2
= WARN( not (k `eqKind` typeKind ty2), ppr ty1 $$ ppr ty2 )
TyConApp eqReprPrimTyCon [k, ty1, ty2]
where
k = typeKind ty1
\end{code}
--------------------- Dictionary types ---------------------------------
\begin{code}
mkClassPred :: Class -> [Type] -> PredType
mkClassPred clas tys = TyConApp (classTyCon clas) tys
isDictTy :: Type -> Bool
isDictTy = isClassPred
isDictLikeTy :: Type -> Bool
isDictLikeTy ty | Just ty' <- coreView ty = isDictLikeTy ty'
isDictLikeTy ty = case splitTyConApp_maybe ty of
Just (tc, tys) | isClassTyCon tc -> True
| isTupleTyCon tc -> all isDictLikeTy tys
_other -> False
\end{code}
Note [Dictionary-like types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Being "dictionary-like" means either a dictionary type or a tuple thereof.
In GHC 6.10 we build implication constraints which construct such tuples,
and if we land up with a binding
t :: (C [a], Eq [a])
t = blah
then we want to treat t as cheap under "-fdicts-cheap" for example.
(Implication constraints are normally inlined, but sadly not if the
occurrence is itself inside an INLINE function! Until we revise the
handling of implication constraints, that is.) This turned out to
be important in getting good arities in DPH code. Example:
class C a
class D a where { foo :: a -> a }
instance C a => D (Maybe a) where { foo x = x }
bar :: (C a, C b) => a -> b -> (Maybe a, Maybe b)
{-# INLINE bar #-}
bar x y = (foo (Just x), foo (Just y))
Then 'bar' should jolly well have arity 4 (two dicts, two args), but
we ended up with something like
bar = __inline_me__ (\d1,d2. let t :: (D (Maybe a), D (Maybe b)) = ...
in \x,y. )
This is all a bit ad-hoc; eg it relies on knowing that implication
constraints build tuples.
Decomposing PredType
\begin{code}
data PredTree = ClassPred Class [Type]
| EqPred Type Type
| TuplePred [PredType]
| IrredPred PredType
classifyPredType :: PredType -> PredTree
classifyPredType ev_ty = case splitTyConApp_maybe ev_ty of
Just (tc, tys) | Just clas <- tyConClass_maybe tc
-> ClassPred clas tys
Just (tc, tys) | tc `hasKey` eqTyConKey
, let [_, ty1, ty2] = tys
-> EqPred ty1 ty2
Just (tc, tys) | isTupleTyCon tc
-> TuplePred tys
_ -> IrredPred ev_ty
\end{code}
\begin{code}
getClassPredTys :: PredType -> (Class, [Type])
getClassPredTys ty = case getClassPredTys_maybe ty of
Just (clas, tys) -> (clas, tys)
Nothing -> pprPanic "getClassPredTys" (ppr ty)
getClassPredTys_maybe :: PredType -> Maybe (Class, [Type])
getClassPredTys_maybe ty = case splitTyConApp_maybe ty of
Just (tc, tys) | Just clas <- tyConClass_maybe tc -> Just (clas, tys)
_ -> Nothing
getEqPredTys :: PredType -> (Type, Type)
getEqPredTys ty
= case splitTyConApp_maybe ty of
Just (tc, (_ : ty1 : ty2 : tys)) -> ASSERT( tc `hasKey` eqTyConKey && null tys )
(ty1, ty2)
_ -> pprPanic "getEqPredTys" (ppr ty)
getEqPredTys_maybe :: PredType -> Maybe (Type, Type)
getEqPredTys_maybe ty
= case splitTyConApp_maybe ty of
Just (tc, [_, ty1, ty2]) | tc `hasKey` eqTyConKey -> Just (ty1, ty2)
_ -> Nothing
\end{code}
%************************************************************************
%* *
Size
%* *
%************************************************************************
\begin{code}
typeSize :: Type -> Int
typeSize (LitTy {}) = 1
typeSize (TyVarTy {}) = 1
typeSize (AppTy t1 t2) = typeSize t1 + typeSize t2
typeSize (FunTy t1 t2) = typeSize t1 + typeSize t2
typeSize (ForAllTy _ t) = 1 + typeSize t
typeSize (TyConApp _ ts) = 1 + sum (map typeSize ts)
varSetElemsKvsFirst :: VarSet -> [TyVar]
varSetElemsKvsFirst set
= kvs ++ tvs
where
(kvs, tvs) = partition isKindVar (varSetElems set)
\end{code}
%************************************************************************
%* *
\subsection{Type families}
%* *
%************************************************************************
\begin{code}
mkFamilyTyConApp :: TyCon -> [Type] -> Type
mkFamilyTyConApp tc tys
| Just (fam_tc, fam_tys) <- tyConFamInst_maybe tc
, let tvs = tyConTyVars tc
fam_subst = ASSERT2( length tvs == length tys, ppr tc <+> ppr tys )
zipTopTvSubst tvs tys
= mkTyConApp fam_tc (substTys fam_subst fam_tys)
| otherwise
= mkTyConApp tc tys
coAxNthLHS :: CoAxiom br -> Int -> Type
coAxNthLHS ax ind =
mkTyConApp (coAxiomTyCon ax) (coAxBranchLHS (coAxiomNthBranch ax ind))
pprSourceTyCon :: TyCon -> SDoc
pprSourceTyCon tycon
| Just (fam_tc, tys) <- tyConFamInst_maybe tycon
= ppr $ fam_tc `TyConApp` tys
| otherwise
= ppr tycon
\end{code}
%************************************************************************
%* *
\subsection{Liftedness}
%* *
%************************************************************************
\begin{code}
isUnLiftedType :: Type -> Bool
isUnLiftedType ty | Just ty' <- coreView ty = isUnLiftedType ty'
isUnLiftedType (ForAllTy _ ty) = isUnLiftedType ty
isUnLiftedType (TyConApp tc _) = isUnLiftedTyCon tc
isUnLiftedType _ = False
isUnboxedTupleType :: Type -> Bool
isUnboxedTupleType ty = case tyConAppTyCon_maybe ty of
Just tc -> isUnboxedTupleTyCon tc
_ -> False
isAlgType :: Type -> Bool
isAlgType ty
= case splitTyConApp_maybe ty of
Just (tc, ty_args) -> ASSERT( ty_args `lengthIs` tyConArity tc )
isAlgTyCon tc
_other -> False
isClosedAlgType :: Type -> Bool
isClosedAlgType ty
= case splitTyConApp_maybe ty of
Just (tc, ty_args) | isAlgTyCon tc && not (isFamilyTyCon tc)
-> ASSERT2( ty_args `lengthIs` tyConArity tc, ppr ty ) True
_other -> False
\end{code}
\begin{code}
isStrictType :: Type -> Bool
isStrictType ty | Just ty' <- coreView ty = isStrictType ty'
isStrictType (ForAllTy _ ty) = isStrictType ty
isStrictType (TyConApp tc _)
| isUnLiftedTyCon tc = True
| isClassTyCon tc, opt_DictsStrict = True
isStrictType _ = False
\end{code}
\begin{code}
isPrimitiveType :: Type -> Bool
isPrimitiveType ty = case splitTyConApp_maybe ty of
Just (tc, ty_args) -> ASSERT( ty_args `lengthIs` tyConArity tc )
isPrimTyCon tc
_ -> False
\end{code}
%************************************************************************
%* *
\subsection{Sequencing on types}
%* *
%************************************************************************
\begin{code}
seqType :: Type -> ()
seqType (LitTy n) = n `seq` ()
seqType (TyVarTy tv) = tv `seq` ()
seqType (AppTy t1 t2) = seqType t1 `seq` seqType t2
seqType (FunTy t1 t2) = seqType t1 `seq` seqType t2
seqType (TyConApp tc tys) = tc `seq` seqTypes tys
seqType (ForAllTy tv ty) = seqType (tyVarKind tv) `seq` seqType ty
seqTypes :: [Type] -> ()
seqTypes [] = ()
seqTypes (ty:tys) = seqType ty `seq` seqTypes tys
\end{code}
%************************************************************************
%* *
Comparision for types
(We don't use instances so that we know where it happens)
%* *
%************************************************************************
\begin{code}
eqKind :: Kind -> Kind -> Bool
eqKind = eqType
eqType :: Type -> Type -> Bool
eqType t1 t2 = isEqual $ cmpType t1 t2
eqTypeX :: RnEnv2 -> Type -> Type -> Bool
eqTypeX env t1 t2 = isEqual $ cmpTypeX env t1 t2
eqTypes :: [Type] -> [Type] -> Bool
eqTypes tys1 tys2 = isEqual $ cmpTypes tys1 tys2
eqPred :: PredType -> PredType -> Bool
eqPred = eqType
eqPredX :: RnEnv2 -> PredType -> PredType -> Bool
eqPredX env p1 p2 = isEqual $ cmpTypeX env p1 p2
eqTyVarBndrs :: RnEnv2 -> [TyVar] -> [TyVar] -> Maybe RnEnv2
eqTyVarBndrs env [] []
= Just env
eqTyVarBndrs env (tv1:tvs1) (tv2:tvs2)
| eqTypeX env (tyVarKind tv1) (tyVarKind tv2)
= eqTyVarBndrs (rnBndr2 env tv1 tv2) tvs1 tvs2
eqTyVarBndrs _ _ _= Nothing
\end{code}
Now here comes the real worker
\begin{code}
cmpType :: Type -> Type -> Ordering
cmpType t1 t2 = cmpTypeX rn_env t1 t2
where
rn_env = mkRnEnv2 (mkInScopeSet (tyVarsOfType t1 `unionVarSet` tyVarsOfType t2))
cmpTypes :: [Type] -> [Type] -> Ordering
cmpTypes ts1 ts2 = cmpTypesX rn_env ts1 ts2
where
rn_env = mkRnEnv2 (mkInScopeSet (tyVarsOfTypes ts1 `unionVarSet` tyVarsOfTypes ts2))
cmpPred :: PredType -> PredType -> Ordering
cmpPred p1 p2 = cmpTypeX rn_env p1 p2
where
rn_env = mkRnEnv2 (mkInScopeSet (tyVarsOfType p1 `unionVarSet` tyVarsOfType p2))
cmpTypeX :: RnEnv2 -> Type -> Type -> Ordering
cmpTypeX env t1 t2 | Just t1' <- coreView t1 = cmpTypeX env t1' t2
| Just t2' <- coreView t2 = cmpTypeX env t1 t2'
cmpTypeX env (TyVarTy tv1) (TyVarTy tv2) = rnOccL env tv1 `compare` rnOccR env tv2
cmpTypeX env (ForAllTy tv1 t1) (ForAllTy tv2 t2) = cmpTypeX env (tyVarKind tv1) (tyVarKind tv2)
`thenCmp` cmpTypeX (rnBndr2 env tv1 tv2) t1 t2
cmpTypeX env (AppTy s1 t1) (AppTy s2 t2) = cmpTypeX env s1 s2 `thenCmp` cmpTypeX env t1 t2
cmpTypeX env (FunTy s1 t1) (FunTy s2 t2) = cmpTypeX env s1 s2 `thenCmp` cmpTypeX env t1 t2
cmpTypeX env (TyConApp tc1 tys1) (TyConApp tc2 tys2) = (tc1 `cmpTc` tc2) `thenCmp` cmpTypesX env tys1 tys2
cmpTypeX _ (LitTy l1) (LitTy l2) = compare l1 l2
cmpTypeX _ (AppTy _ _) (TyVarTy _) = GT
cmpTypeX _ (FunTy _ _) (TyVarTy _) = GT
cmpTypeX _ (FunTy _ _) (AppTy _ _) = GT
cmpTypeX _ (LitTy _) (TyVarTy _) = GT
cmpTypeX _ (LitTy _) (AppTy _ _) = GT
cmpTypeX _ (LitTy _) (FunTy _ _) = GT
cmpTypeX _ (TyConApp _ _) (TyVarTy _) = GT
cmpTypeX _ (TyConApp _ _) (AppTy _ _) = GT
cmpTypeX _ (TyConApp _ _) (FunTy _ _) = GT
cmpTypeX _ (TyConApp _ _) (LitTy _) = GT
cmpTypeX _ (ForAllTy _ _) (TyVarTy _) = GT
cmpTypeX _ (ForAllTy _ _) (AppTy _ _) = GT
cmpTypeX _ (ForAllTy _ _) (FunTy _ _) = GT
cmpTypeX _ (ForAllTy _ _) (LitTy _) = GT
cmpTypeX _ (ForAllTy _ _) (TyConApp _ _) = GT
cmpTypeX _ _ _ = LT
cmpTypesX :: RnEnv2 -> [Type] -> [Type] -> Ordering
cmpTypesX _ [] [] = EQ
cmpTypesX env (t1:tys1) (t2:tys2) = cmpTypeX env t1 t2 `thenCmp` cmpTypesX env tys1 tys2
cmpTypesX _ [] _ = LT
cmpTypesX _ _ [] = GT
cmpTc :: TyCon -> TyCon -> Ordering
cmpTc tc1 tc2
| u1 == openTypeKindTyConKey, isSubOpenTypeKindKey u2 = EQ
| u2 == openTypeKindTyConKey, isSubOpenTypeKindKey u1 = EQ
| otherwise = nu1 `compare` nu2
where
u1 = tyConUnique tc1
nu1 = if u1==constraintKindTyConKey then liftedTypeKindTyConKey else u1
u2 = tyConUnique tc2
nu2 = if u2==constraintKindTyConKey then liftedTypeKindTyConKey else u2
\end{code}
Note [Comparison with OpenTypeKind]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In PrimOpWrappers we have things like
PrimOpWrappers.mkWeak# = /\ a b c. Prim.mkWeak# a b c
where
Prim.mkWeak# :: forall (a:Open) b c. a -> b -> c
-> State# RealWorld -> (# State# RealWorld, Weak# b #)
Now, eta reduction will turn the definition into
PrimOpWrappers.mkWeak# = Prim.mkWeak#
which is kind-of OK, but now the types aren't really equal. So HACK HACK
we pretend (in Core) that Open is equal to * or #. I hate this.
Note [cmpTypeX]
~~~~~~~~~~~~~~~
When we compare foralls, we should look at the kinds. But if we do so,
we get a corelint error like the following (in
libraries/ghc-prim/GHC/PrimopWrappers.hs):
Binder's type: forall (o_abY :: *).
o_abY
-> GHC.Prim.State# GHC.Prim.RealWorld
-> GHC.Prim.State# GHC.Prim.RealWorld
Rhs type: forall (a_12 :: ?).
a_12
-> GHC.Prim.State# GHC.Prim.RealWorld
-> GHC.Prim.State# GHC.Prim.RealWorld
This is why we don't look at the kind. Maybe we should look if the
kinds are compatible.
-- cmpTypeX env (ForAllTy tv1 t1) (ForAllTy tv2 t2)
-- = cmpTypeX env (tyVarKind tv1) (tyVarKind tv2) `thenCmp`
-- cmpTypeX (rnBndr2 env tv1 tv2) t1 t2
%************************************************************************
%* *
Type substitutions
%* *
%************************************************************************
\begin{code}
emptyTvSubstEnv :: TvSubstEnv
emptyTvSubstEnv = emptyVarEnv
composeTvSubst :: InScopeSet -> TvSubstEnv -> TvSubstEnv -> TvSubstEnv
composeTvSubst in_scope env1 env2
= env1 `plusVarEnv` mapVarEnv (substTy subst1) env2
where
subst1 = TvSubst in_scope env1
emptyTvSubst :: TvSubst
emptyTvSubst = TvSubst emptyInScopeSet emptyTvSubstEnv
isEmptyTvSubst :: TvSubst -> Bool
isEmptyTvSubst (TvSubst _ tenv) = isEmptyVarEnv tenv
mkTvSubst :: InScopeSet -> TvSubstEnv -> TvSubst
mkTvSubst = TvSubst
getTvSubstEnv :: TvSubst -> TvSubstEnv
getTvSubstEnv (TvSubst _ env) = env
getTvInScope :: TvSubst -> InScopeSet
getTvInScope (TvSubst in_scope _) = in_scope
isInScope :: Var -> TvSubst -> Bool
isInScope v (TvSubst in_scope _) = v `elemInScopeSet` in_scope
notElemTvSubst :: CoVar -> TvSubst -> Bool
notElemTvSubst v (TvSubst _ tenv) = not (v `elemVarEnv` tenv)
setTvSubstEnv :: TvSubst -> TvSubstEnv -> TvSubst
setTvSubstEnv (TvSubst in_scope _) tenv = TvSubst in_scope tenv
zapTvSubstEnv :: TvSubst -> TvSubst
zapTvSubstEnv (TvSubst in_scope _) = TvSubst in_scope emptyVarEnv
extendTvInScope :: TvSubst -> Var -> TvSubst
extendTvInScope (TvSubst in_scope tenv) var = TvSubst (extendInScopeSet in_scope var) tenv
extendTvInScopeList :: TvSubst -> [Var] -> TvSubst
extendTvInScopeList (TvSubst in_scope tenv) vars = TvSubst (extendInScopeSetList in_scope vars) tenv
extendTvSubst :: TvSubst -> TyVar -> Type -> TvSubst
extendTvSubst (TvSubst in_scope tenv) tv ty = TvSubst in_scope (extendVarEnv tenv tv ty)
extendTvSubstList :: TvSubst -> [TyVar] -> [Type] -> TvSubst
extendTvSubstList (TvSubst in_scope tenv) tvs tys
= TvSubst in_scope (extendVarEnvList tenv (tvs `zip` tys))
unionTvSubst :: TvSubst -> TvSubst -> TvSubst
unionTvSubst (TvSubst in_scope1 tenv1) (TvSubst in_scope2 tenv2)
= ASSERT( not (tenv1 `intersectsVarEnv` tenv2) )
TvSubst (in_scope1 `unionInScope` in_scope2)
(tenv1 `plusVarEnv` tenv2)
mkOpenTvSubst :: TvSubstEnv -> TvSubst
mkOpenTvSubst tenv = TvSubst (mkInScopeSet (tyVarsOfTypes (varEnvElts tenv))) tenv
zipOpenTvSubst :: [TyVar] -> [Type] -> TvSubst
zipOpenTvSubst tyvars tys
| debugIsOn && (length tyvars /= length tys)
= pprTrace "zipOpenTvSubst" (ppr tyvars $$ ppr tys) emptyTvSubst
| otherwise
= TvSubst (mkInScopeSet (tyVarsOfTypes tys)) (zipTyEnv tyvars tys)
mkTopTvSubst :: [(TyVar, Type)] -> TvSubst
mkTopTvSubst prs = TvSubst emptyInScopeSet (mkVarEnv prs)
zipTopTvSubst :: [TyVar] -> [Type] -> TvSubst
zipTopTvSubst tyvars tys
| debugIsOn && (length tyvars /= length tys)
= pprTrace "zipTopTvSubst" (ppr tyvars $$ ppr tys) emptyTvSubst
| otherwise
= TvSubst emptyInScopeSet (zipTyEnv tyvars tys)
zipTyEnv :: [TyVar] -> [Type] -> TvSubstEnv
zipTyEnv tyvars tys
| debugIsOn && (length tyvars /= length tys)
= pprTrace "zipTyEnv" (ppr tyvars $$ ppr tys) emptyVarEnv
| otherwise
= zip_ty_env tyvars tys emptyVarEnv
zip_ty_env :: [TyVar] -> [Type] -> TvSubstEnv -> TvSubstEnv
zip_ty_env [] [] env = env
zip_ty_env (tv:tvs) (ty:tys) env = zip_ty_env tvs tys (extendVarEnv env tv ty)
zip_ty_env tvs tys env = pprTrace "Var/Type length mismatch: " (ppr tvs $$ ppr tys) env
instance Outputable TvSubst where
ppr (TvSubst ins tenv)
= brackets $ sep[ ptext (sLit "TvSubst"),
nest 2 (ptext (sLit "In scope:") <+> ppr ins),
nest 2 (ptext (sLit "Type env:") <+> ppr tenv) ]
\end{code}
%************************************************************************
%* *
Performing type or kind substitutions
%* *
%************************************************************************
\begin{code}
substTyWith :: [TyVar] -> [Type] -> Type -> Type
substTyWith tvs tys = ASSERT( length tvs == length tys )
substTy (zipOpenTvSubst tvs tys)
substKiWith :: [KindVar] -> [Kind] -> Kind -> Kind
substKiWith = substTyWith
substTysWith :: [TyVar] -> [Type] -> [Type] -> [Type]
substTysWith tvs tys = ASSERT( length tvs == length tys )
substTys (zipOpenTvSubst tvs tys)
substKisWith :: [KindVar] -> [Kind] -> [Kind] -> [Kind]
substKisWith = substTysWith
substTy :: TvSubst -> Type -> Type
substTy subst ty | isEmptyTvSubst subst = ty
| otherwise = subst_ty subst ty
substTys :: TvSubst -> [Type] -> [Type]
substTys subst tys | isEmptyTvSubst subst = tys
| otherwise = map (subst_ty subst) tys
substTheta :: TvSubst -> ThetaType -> ThetaType
substTheta subst theta
| isEmptyTvSubst subst = theta
| otherwise = map (substTy subst) theta
deShadowTy :: TyVarSet -> Type -> Type
deShadowTy tvs ty
= subst_ty (mkTvSubst in_scope emptyTvSubstEnv) ty
where
in_scope = mkInScopeSet tvs
subst_ty :: TvSubst -> Type -> Type
subst_ty subst ty
= go ty
where
go (LitTy n) = n `seq` LitTy n
go (TyVarTy tv) = substTyVar subst tv
go (TyConApp tc tys) = let args = map go tys
in args `seqList` TyConApp tc args
go (FunTy arg res) = (FunTy $! (go arg)) $! (go res)
go (AppTy fun arg) = mkAppTy (go fun) $! (go arg)
go (ForAllTy tv ty) = case substTyVarBndr subst tv of
(subst', tv') ->
ForAllTy tv' $! (subst_ty subst' ty)
substTyVar :: TvSubst -> TyVar -> Type
substTyVar (TvSubst _ tenv) tv
| Just ty <- lookupVarEnv tenv tv = ty
| otherwise = ASSERT( isTyVar tv ) TyVarTy tv
substTyVars :: TvSubst -> [TyVar] -> [Type]
substTyVars subst tvs = map (substTyVar subst) tvs
lookupTyVar :: TvSubst -> TyVar -> Maybe Type
lookupTyVar (TvSubst _ tenv) tv = lookupVarEnv tenv tv
substTyVarBndr :: TvSubst -> TyVar -> (TvSubst, TyVar)
substTyVarBndr subst@(TvSubst in_scope tenv) old_var
= ASSERT2( _no_capture, ppr old_var $$ ppr subst )
(TvSubst (in_scope `extendInScopeSet` new_var) new_env, new_var)
where
new_env | no_change = delVarEnv tenv old_var
| otherwise = extendVarEnv tenv old_var (TyVarTy new_var)
_no_capture = not (new_var `elemVarSet` tyVarsOfTypes (varEnvElts tenv))
old_ki = tyVarKind old_var
no_kind_change = isEmptyVarSet (tyVarsOfType old_ki)
no_change = no_kind_change && (new_var == old_var)
new_var | no_kind_change = uniqAway in_scope old_var
| otherwise = uniqAway in_scope $ updateTyVarKind (substTy subst) old_var
cloneTyVarBndr :: TvSubst -> TyVar -> Unique -> (TvSubst, TyVar)
cloneTyVarBndr (TvSubst in_scope tv_env) tv uniq
= (TvSubst (extendInScopeSet in_scope tv')
(extendVarEnv tv_env tv (mkTyVarTy tv')), tv')
where
tv' = setVarUnique tv uniq
\end{code}
----------------------------------------------------
-- Kind Stuff
Kinds
~~~~~
For the description of subkinding in GHC, see
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/TypeType#Kinds
\begin{code}
type MetaKindVar = TyVar
type SimpleKind = Kind
\end{code}
%************************************************************************
%* *
The kind of a type
%* *
%************************************************************************
\begin{code}
typeKind :: Type -> Kind
typeKind (TyConApp tc tys)
| isPromotedTyCon tc
= ASSERT( tyConArity tc == length tys ) superKind
| otherwise
= kindAppResult (tyConKind tc) tys
typeKind (AppTy fun arg) = kindAppResult (typeKind fun) [arg]
typeKind (LitTy l) = typeLiteralKind l
typeKind (ForAllTy _ ty) = typeKind ty
typeKind (TyVarTy tyvar) = tyVarKind tyvar
typeKind _ty@(FunTy _arg res)
| isSuperKind k = k
| otherwise = ASSERT2( isSubOpenTypeKind k, ppr _ty $$ ppr k ) liftedTypeKind
where
k = typeKind res
typeLiteralKind :: TyLit -> Kind
typeLiteralKind l =
case l of
NumTyLit _ -> typeNatKind
StrTyLit _ -> typeSymbolKind
\end{code}
Kind inference
~~~~~~~~~~~~~~
During kind inference, a kind variable unifies only with
a "simple kind", sk
sk ::= * | sk1 -> sk2
For example
data T a = MkT a (T Int#)
fails. We give T the kind (k -> *), and the kind variable k won't unify
with # (the kind of Int#).
Type inference
~~~~~~~~~~~~~~
When creating a fresh internal type variable, we give it a kind to express
constraints on it. E.g. in (\x->e) we make up a fresh type variable for x,
with kind ??.
During unification we only bind an internal type variable to a type
whose kind is lower in the sub-kind hierarchy than the kind of the tyvar.
When unifying two internal type variables, we collect their kind constraints by
finding the GLB of the two. Since the partial order is a tree, they only
have a glb if one is a sub-kind of the other. In that case, we bind the
less-informative one to the more informative one. Neat, eh?