%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section[ConFold]{Constant Folder}
Conceptually, constant folding should be parameterized with the kind
of target machine to get identical behaviour during compilation time
and runtime. We cheat a little bit here...
ToDo:
check boundaries before folding, e.g. we can fold the Float addition
(i1 + i2) only if it results in a valid Float.
\begin{code}
module PrelRules ( primOpRules, builtinRules ) where
#include "HsVersions.h"
#include "../includes/MachDeps.h"
import MkId ( mkPrimOpId, magicSingIId )
import CoreSyn
import MkCore
import Id
import Var (setVarType)
import Literal
import CoreSubst ( exprIsLiteral_maybe )
import PrimOp ( PrimOp(..), tagToEnumKey )
import TysWiredIn
import TysPrim
import TyCon ( tyConDataCons_maybe, isEnumerationTyCon, isNewTyCon, unwrapNewTyCon_maybe )
import DataCon ( dataConTag, dataConTyCon, dataConWorkId )
import CoreUtils ( cheapEqExpr, exprIsHNF )
import CoreUnfold ( exprIsConApp_maybe )
import Type
import TypeRep
import OccName ( occNameFS )
import PrelNames
import Maybes ( orElse )
import Name ( Name, nameOccName )
import Outputable
import FastString
import BasicTypes
import DynFlags
import Platform
import Util
import Coercion (mkUnbranchedAxInstCo,mkSymCo,Role(..))
import Control.Monad
import Data.Bits as Bits
import qualified Data.ByteString as BS
import Data.Int
import Data.Ratio
import Data.Word
\end{code}
Note [Constant folding]
~~~~~~~~~~~~~~~~~~~~~~~
primOpRules generates a rewrite rule for each primop
These rules do what is often called "constant folding"
E.g. the rules for +# might say
4 +# 5 = 9
Well, of course you'd need a lot of rules if you did it
like that, so we use a BuiltinRule instead, so that we
can match in any two literal values. So the rule is really
more like
(Lit x) +# (Lit y) = Lit (x+#y)
where the (+#) on the rhs is done at compile time
That is why these rules are built in here.
\begin{code}
primOpRules :: Name -> PrimOp -> Maybe CoreRule
primOpRules nm TagToEnumOp = mkPrimOpRule nm 2 [ tagToEnumRule ]
primOpRules nm DataToTagOp = mkPrimOpRule nm 2 [ dataToTagRule ]
primOpRules nm IntAddOp = mkPrimOpRule nm 2 [ binaryLit (intOp2 (+))
, identityDynFlags zeroi ]
primOpRules nm IntSubOp = mkPrimOpRule nm 2 [ binaryLit (intOp2 ())
, rightIdentityDynFlags zeroi
, equalArgs >> retLit zeroi ]
primOpRules nm IntMulOp = mkPrimOpRule nm 2 [ binaryLit (intOp2 (*))
, zeroElem zeroi
, identityDynFlags onei ]
primOpRules nm IntQuotOp = mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (intOp2 quot)
, leftZero zeroi
, rightIdentityDynFlags onei
, equalArgs >> retLit onei ]
primOpRules nm IntRemOp = mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (intOp2 rem)
, leftZero zeroi
, do l <- getLiteral 1
dflags <- getDynFlags
guard (l == onei dflags)
retLit zeroi
, equalArgs >> retLit zeroi
, equalArgs >> retLit zeroi ]
primOpRules nm AndIOp = mkPrimOpRule nm 2 [ binaryLit (intOp2 (.&.))
, idempotent
, zeroElem zeroi ]
primOpRules nm OrIOp = mkPrimOpRule nm 2 [ binaryLit (intOp2 (.|.))
, idempotent
, identityDynFlags zeroi ]
primOpRules nm XorIOp = mkPrimOpRule nm 2 [ binaryLit (intOp2 xor)
, identityDynFlags zeroi
, equalArgs >> retLit zeroi ]
primOpRules nm IntNegOp = mkPrimOpRule nm 1 [ unaryLit negOp
, inversePrimOp IntNegOp ]
primOpRules nm ISllOp = mkPrimOpRule nm 2 [ binaryLit (intOp2 Bits.shiftL)
, rightIdentityDynFlags zeroi ]
primOpRules nm ISraOp = mkPrimOpRule nm 2 [ binaryLit (intOp2 Bits.shiftR)
, rightIdentityDynFlags zeroi ]
primOpRules nm ISrlOp = mkPrimOpRule nm 2 [ binaryLit (intOp2 shiftRightLogical)
, rightIdentityDynFlags zeroi ]
primOpRules nm WordAddOp = mkPrimOpRule nm 2 [ binaryLit (wordOp2 (+))
, identityDynFlags zerow ]
primOpRules nm WordSubOp = mkPrimOpRule nm 2 [ binaryLit (wordOp2 ())
, rightIdentityDynFlags zerow
, equalArgs >> retLit zerow ]
primOpRules nm WordMulOp = mkPrimOpRule nm 2 [ binaryLit (wordOp2 (*))
, identityDynFlags onew ]
primOpRules nm WordQuotOp = mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (wordOp2 quot)
, rightIdentityDynFlags onew ]
primOpRules nm WordRemOp = mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (wordOp2 rem)
, rightIdentityDynFlags onew ]
primOpRules nm AndOp = mkPrimOpRule nm 2 [ binaryLit (wordOp2 (.&.))
, idempotent
, zeroElem zerow ]
primOpRules nm OrOp = mkPrimOpRule nm 2 [ binaryLit (wordOp2 (.|.))
, idempotent
, identityDynFlags zerow ]
primOpRules nm XorOp = mkPrimOpRule nm 2 [ binaryLit (wordOp2 xor)
, identityDynFlags zerow
, equalArgs >> retLit zerow ]
primOpRules nm SllOp = mkPrimOpRule nm 2 [ binaryLit (wordShiftOp2 Bits.shiftL)
, rightIdentityDynFlags zeroi ]
primOpRules nm SrlOp = mkPrimOpRule nm 2 [ binaryLit (wordShiftOp2 shiftRightLogical)
, rightIdentityDynFlags zeroi ]
primOpRules nm Word2IntOp = mkPrimOpRule nm 1 [ liftLitDynFlags word2IntLit
, inversePrimOp Int2WordOp ]
primOpRules nm Int2WordOp = mkPrimOpRule nm 1 [ liftLitDynFlags int2WordLit
, inversePrimOp Word2IntOp ]
primOpRules nm Narrow8IntOp = mkPrimOpRule nm 1 [ liftLit narrow8IntLit
, subsumedByPrimOp Narrow8IntOp
, Narrow8IntOp `subsumesPrimOp` Narrow16IntOp
, Narrow8IntOp `subsumesPrimOp` Narrow32IntOp ]
primOpRules nm Narrow16IntOp = mkPrimOpRule nm 1 [ liftLit narrow16IntLit
, subsumedByPrimOp Narrow8IntOp
, subsumedByPrimOp Narrow16IntOp
, Narrow16IntOp `subsumesPrimOp` Narrow32IntOp ]
primOpRules nm Narrow32IntOp = mkPrimOpRule nm 1 [ liftLit narrow32IntLit
, subsumedByPrimOp Narrow8IntOp
, subsumedByPrimOp Narrow16IntOp
, subsumedByPrimOp Narrow32IntOp
, removeOp32 ]
primOpRules nm Narrow8WordOp = mkPrimOpRule nm 1 [ liftLit narrow8WordLit
, subsumedByPrimOp Narrow8WordOp
, Narrow8WordOp `subsumesPrimOp` Narrow16WordOp
, Narrow8WordOp `subsumesPrimOp` Narrow32WordOp ]
primOpRules nm Narrow16WordOp = mkPrimOpRule nm 1 [ liftLit narrow16WordLit
, subsumedByPrimOp Narrow8WordOp
, subsumedByPrimOp Narrow16WordOp
, Narrow16WordOp `subsumesPrimOp` Narrow32WordOp ]
primOpRules nm Narrow32WordOp = mkPrimOpRule nm 1 [ liftLit narrow32WordLit
, subsumedByPrimOp Narrow8WordOp
, subsumedByPrimOp Narrow16WordOp
, subsumedByPrimOp Narrow32WordOp
, removeOp32 ]
primOpRules nm OrdOp = mkPrimOpRule nm 1 [ liftLit char2IntLit
, inversePrimOp ChrOp ]
primOpRules nm ChrOp = mkPrimOpRule nm 1 [ do [Lit lit] <- getArgs
guard (litFitsInChar lit)
liftLit int2CharLit
, inversePrimOp OrdOp ]
primOpRules nm Float2IntOp = mkPrimOpRule nm 1 [ liftLit float2IntLit ]
primOpRules nm Int2FloatOp = mkPrimOpRule nm 1 [ liftLit int2FloatLit ]
primOpRules nm Double2IntOp = mkPrimOpRule nm 1 [ liftLit double2IntLit ]
primOpRules nm Int2DoubleOp = mkPrimOpRule nm 1 [ liftLit int2DoubleLit ]
primOpRules nm Float2DoubleOp = mkPrimOpRule nm 1 [ liftLit float2DoubleLit ]
primOpRules nm Double2FloatOp = mkPrimOpRule nm 1 [ liftLit double2FloatLit ]
primOpRules nm FloatAddOp = mkPrimOpRule nm 2 [ binaryLit (floatOp2 (+))
, identity zerof ]
primOpRules nm FloatSubOp = mkPrimOpRule nm 2 [ binaryLit (floatOp2 ())
, rightIdentity zerof ]
primOpRules nm FloatMulOp = mkPrimOpRule nm 2 [ binaryLit (floatOp2 (*))
, identity onef
, strengthReduction twof FloatAddOp ]
primOpRules nm FloatDivOp = mkPrimOpRule nm 2 [ guardFloatDiv >> binaryLit (floatOp2 (/))
, rightIdentity onef ]
primOpRules nm FloatNegOp = mkPrimOpRule nm 1 [ unaryLit negOp
, inversePrimOp FloatNegOp ]
primOpRules nm DoubleAddOp = mkPrimOpRule nm 2 [ binaryLit (doubleOp2 (+))
, identity zerod ]
primOpRules nm DoubleSubOp = mkPrimOpRule nm 2 [ binaryLit (doubleOp2 ())
, rightIdentity zerod ]
primOpRules nm DoubleMulOp = mkPrimOpRule nm 2 [ binaryLit (doubleOp2 (*))
, identity oned
, strengthReduction twod DoubleAddOp ]
primOpRules nm DoubleDivOp = mkPrimOpRule nm 2 [ guardDoubleDiv >> binaryLit (doubleOp2 (/))
, rightIdentity oned ]
primOpRules nm DoubleNegOp = mkPrimOpRule nm 1 [ unaryLit negOp
, inversePrimOp DoubleNegOp ]
primOpRules nm IntEqOp = mkRelOpRule nm (==) [ litEq True ]
primOpRules nm IntNeOp = mkRelOpRule nm (/=) [ litEq False ]
primOpRules nm CharEqOp = mkRelOpRule nm (==) [ litEq True ]
primOpRules nm CharNeOp = mkRelOpRule nm (/=) [ litEq False ]
primOpRules nm IntGtOp = mkRelOpRule nm (>) [ boundsCmp Gt ]
primOpRules nm IntGeOp = mkRelOpRule nm (>=) [ boundsCmp Ge ]
primOpRules nm IntLeOp = mkRelOpRule nm (<=) [ boundsCmp Le ]
primOpRules nm IntLtOp = mkRelOpRule nm (<) [ boundsCmp Lt ]
primOpRules nm CharGtOp = mkRelOpRule nm (>) [ boundsCmp Gt ]
primOpRules nm CharGeOp = mkRelOpRule nm (>=) [ boundsCmp Ge ]
primOpRules nm CharLeOp = mkRelOpRule nm (<=) [ boundsCmp Le ]
primOpRules nm CharLtOp = mkRelOpRule nm (<) [ boundsCmp Lt ]
primOpRules nm FloatGtOp = mkFloatingRelOpRule nm (>) []
primOpRules nm FloatGeOp = mkFloatingRelOpRule nm (>=) []
primOpRules nm FloatLeOp = mkFloatingRelOpRule nm (<=) []
primOpRules nm FloatLtOp = mkFloatingRelOpRule nm (<) []
primOpRules nm FloatEqOp = mkFloatingRelOpRule nm (==) [ litEq True ]
primOpRules nm FloatNeOp = mkFloatingRelOpRule nm (/=) [ litEq False ]
primOpRules nm DoubleGtOp = mkFloatingRelOpRule nm (>) []
primOpRules nm DoubleGeOp = mkFloatingRelOpRule nm (>=) []
primOpRules nm DoubleLeOp = mkFloatingRelOpRule nm (<=) []
primOpRules nm DoubleLtOp = mkFloatingRelOpRule nm (<) []
primOpRules nm DoubleEqOp = mkFloatingRelOpRule nm (==) [ litEq True ]
primOpRules nm DoubleNeOp = mkFloatingRelOpRule nm (/=) [ litEq False ]
primOpRules nm WordGtOp = mkRelOpRule nm (>) [ boundsCmp Gt ]
primOpRules nm WordGeOp = mkRelOpRule nm (>=) [ boundsCmp Ge ]
primOpRules nm WordLeOp = mkRelOpRule nm (<=) [ boundsCmp Le ]
primOpRules nm WordLtOp = mkRelOpRule nm (<) [ boundsCmp Lt ]
primOpRules nm WordEqOp = mkRelOpRule nm (==) [ litEq True ]
primOpRules nm WordNeOp = mkRelOpRule nm (/=) [ litEq False ]
primOpRules nm AddrAddOp = mkPrimOpRule nm 2 [ rightIdentityDynFlags zeroi ]
primOpRules nm SeqOp = mkPrimOpRule nm 4 [ seqRule ]
primOpRules nm SparkOp = mkPrimOpRule nm 4 [ sparkRule ]
primOpRules _ _ = Nothing
\end{code}
%************************************************************************
%* *
\subsection{Doing the business}
%* *
%************************************************************************
\begin{code}
mkPrimOpRule :: Name -> Int -> [RuleM CoreExpr] -> Maybe CoreRule
mkPrimOpRule nm arity rules = Just $ mkBasicRule nm arity (msum rules)
mkRelOpRule :: Name -> (forall a . Ord a => a -> a -> Bool)
-> [RuleM CoreExpr] -> Maybe CoreRule
mkRelOpRule nm cmp extra
= mkPrimOpRule nm 2 $ rules ++ extra
where
rules = [ binaryCmpLit cmp
, do equalArgs
dflags <- getDynFlags
return (if cmp True True
then trueValInt dflags
else falseValInt dflags) ]
mkFloatingRelOpRule :: Name -> (forall a . Ord a => a -> a -> Bool)
-> [RuleM CoreExpr] -> Maybe CoreRule
mkFloatingRelOpRule nm cmp extra
= mkPrimOpRule nm 2 $ binaryCmpLit cmp : extra
zeroi, onei, zerow, onew :: DynFlags -> Literal
zeroi dflags = mkMachInt dflags 0
onei dflags = mkMachInt dflags 1
zerow dflags = mkMachWord dflags 0
onew dflags = mkMachWord dflags 1
zerof, onef, twof, zerod, oned, twod :: Literal
zerof = mkMachFloat 0.0
onef = mkMachFloat 1.0
twof = mkMachFloat 2.0
zerod = mkMachDouble 0.0
oned = mkMachDouble 1.0
twod = mkMachDouble 2.0
cmpOp :: DynFlags -> (forall a . Ord a => a -> a -> Bool)
-> Literal -> Literal -> Maybe CoreExpr
cmpOp dflags cmp = go
where
done True = Just $ trueValInt dflags
done False = Just $ falseValInt dflags
go (MachChar i1) (MachChar i2) = done (i1 `cmp` i2)
go (MachInt i1) (MachInt i2) = done (i1 `cmp` i2)
go (MachInt64 i1) (MachInt64 i2) = done (i1 `cmp` i2)
go (MachWord i1) (MachWord i2) = done (i1 `cmp` i2)
go (MachWord64 i1) (MachWord64 i2) = done (i1 `cmp` i2)
go (MachFloat i1) (MachFloat i2) = done (i1 `cmp` i2)
go (MachDouble i1) (MachDouble i2) = done (i1 `cmp` i2)
go _ _ = Nothing
negOp :: DynFlags -> Literal -> Maybe CoreExpr
negOp _ (MachFloat 0.0) = Nothing
negOp dflags (MachFloat f) = Just (mkFloatVal dflags (f))
negOp _ (MachDouble 0.0) = Nothing
negOp dflags (MachDouble d) = Just (mkDoubleVal dflags (d))
negOp dflags (MachInt i) = intResult dflags (i)
negOp _ _ = Nothing
intOp2 :: (Integral a, Integral b)
=> (a -> b -> Integer)
-> DynFlags -> Literal -> Literal -> Maybe CoreExpr
intOp2 op dflags (MachInt i1) (MachInt i2) = intResult dflags (fromInteger i1 `op` fromInteger i2)
intOp2 _ _ _ _ = Nothing
shiftRightLogical :: Integer -> Int -> Integer
shiftRightLogical x n = fromIntegral (fromInteger x `shiftR` n :: Word)
retLit :: (DynFlags -> Literal) -> RuleM CoreExpr
retLit l = do dflags <- getDynFlags
return $ Lit $ l dflags
wordOp2 :: (Integral a, Integral b)
=> (a -> b -> Integer)
-> DynFlags -> Literal -> Literal -> Maybe CoreExpr
wordOp2 op dflags (MachWord w1) (MachWord w2)
= wordResult dflags (fromInteger w1 `op` fromInteger w2)
wordOp2 _ _ _ _ = Nothing
wordShiftOp2 :: (Integer -> Int -> Integer)
-> DynFlags -> Literal -> Literal
-> Maybe CoreExpr
wordShiftOp2 op dflags (MachWord x) (MachInt n)
= wordResult dflags (x `op` fromInteger n)
wordShiftOp2 _ _ _ _ = Nothing
floatOp2 :: (Rational -> Rational -> Rational)
-> DynFlags -> Literal -> Literal
-> Maybe (Expr CoreBndr)
floatOp2 op dflags (MachFloat f1) (MachFloat f2)
= Just (mkFloatVal dflags (f1 `op` f2))
floatOp2 _ _ _ _ = Nothing
doubleOp2 :: (Rational -> Rational -> Rational)
-> DynFlags -> Literal -> Literal
-> Maybe (Expr CoreBndr)
doubleOp2 op dflags (MachDouble f1) (MachDouble f2)
= Just (mkDoubleVal dflags (f1 `op` f2))
doubleOp2 _ _ _ _ = Nothing
litEq :: Bool
-> RuleM CoreExpr
litEq is_eq = msum
[ do [Lit lit, expr] <- getArgs
dflags <- getDynFlags
do_lit_eq dflags lit expr
, do [expr, Lit lit] <- getArgs
dflags <- getDynFlags
do_lit_eq dflags lit expr ]
where
do_lit_eq dflags lit expr = do
guard (not (litIsLifted lit))
return (mkWildCase expr (literalType lit) intPrimTy
[(DEFAULT, [], val_if_neq),
(LitAlt lit, [], val_if_eq)])
where
val_if_eq | is_eq = trueValInt dflags
| otherwise = falseValInt dflags
val_if_neq | is_eq = falseValInt dflags
| otherwise = trueValInt dflags
boundsCmp :: Comparison -> RuleM CoreExpr
boundsCmp op = do
dflags <- getDynFlags
[a, b] <- getArgs
liftMaybe $ mkRuleFn dflags op a b
data Comparison = Gt | Ge | Lt | Le
mkRuleFn :: DynFlags -> Comparison -> CoreExpr -> CoreExpr -> Maybe CoreExpr
mkRuleFn dflags Gt (Lit lit) _ | isMinBound dflags lit = Just $ falseValInt dflags
mkRuleFn dflags Le (Lit lit) _ | isMinBound dflags lit = Just $ trueValInt dflags
mkRuleFn dflags Ge _ (Lit lit) | isMinBound dflags lit = Just $ trueValInt dflags
mkRuleFn dflags Lt _ (Lit lit) | isMinBound dflags lit = Just $ falseValInt dflags
mkRuleFn dflags Ge (Lit lit) _ | isMaxBound dflags lit = Just $ trueValInt dflags
mkRuleFn dflags Lt (Lit lit) _ | isMaxBound dflags lit = Just $ falseValInt dflags
mkRuleFn dflags Gt _ (Lit lit) | isMaxBound dflags lit = Just $ falseValInt dflags
mkRuleFn dflags Le _ (Lit lit) | isMaxBound dflags lit = Just $ trueValInt dflags
mkRuleFn _ _ _ _ = Nothing
isMinBound :: DynFlags -> Literal -> Bool
isMinBound _ (MachChar c) = c == minBound
isMinBound dflags (MachInt i) = i == tARGET_MIN_INT dflags
isMinBound _ (MachInt64 i) = i == toInteger (minBound :: Int64)
isMinBound _ (MachWord i) = i == 0
isMinBound _ (MachWord64 i) = i == 0
isMinBound _ _ = False
isMaxBound :: DynFlags -> Literal -> Bool
isMaxBound _ (MachChar c) = c == maxBound
isMaxBound dflags (MachInt i) = i == tARGET_MAX_INT dflags
isMaxBound _ (MachInt64 i) = i == toInteger (maxBound :: Int64)
isMaxBound dflags (MachWord i) = i == tARGET_MAX_WORD dflags
isMaxBound _ (MachWord64 i) = i == toInteger (maxBound :: Word64)
isMaxBound _ _ = False
intResult :: DynFlags -> Integer -> Maybe CoreExpr
intResult dflags result = Just (mkIntVal dflags result')
where result' = case platformWordSize (targetPlatform dflags) of
4 -> toInteger (fromInteger result :: Int32)
8 -> toInteger (fromInteger result :: Int64)
w -> panic ("intResult: Unknown platformWordSize: " ++ show w)
wordResult :: DynFlags -> Integer -> Maybe CoreExpr
wordResult dflags result = Just (mkWordVal dflags result')
where result' = case platformWordSize (targetPlatform dflags) of
4 -> toInteger (fromInteger result :: Word32)
8 -> toInteger (fromInteger result :: Word64)
w -> panic ("wordResult: Unknown platformWordSize: " ++ show w)
inversePrimOp :: PrimOp -> RuleM CoreExpr
inversePrimOp primop = do
[Var primop_id `App` e] <- getArgs
matchPrimOpId primop primop_id
return e
subsumesPrimOp :: PrimOp -> PrimOp -> RuleM CoreExpr
this `subsumesPrimOp` that = do
[Var primop_id `App` e] <- getArgs
matchPrimOpId that primop_id
return (Var (mkPrimOpId this) `App` e)
subsumedByPrimOp :: PrimOp -> RuleM CoreExpr
subsumedByPrimOp primop = do
[e@(Var primop_id `App` _)] <- getArgs
matchPrimOpId primop primop_id
return e
idempotent :: RuleM CoreExpr
idempotent = do [e1, e2] <- getArgs
guard $ cheapEqExpr e1 e2
return e1
\end{code}
%************************************************************************
%* *
\subsection{Vaguely generic functions}
%* *
%************************************************************************
\begin{code}
mkBasicRule :: Name -> Int -> RuleM CoreExpr -> CoreRule
mkBasicRule op_name n_args rm
= BuiltinRule { ru_name = occNameFS (nameOccName op_name),
ru_fn = op_name,
ru_nargs = n_args,
ru_try = \ dflags in_scope _ -> runRuleM rm dflags in_scope }
newtype RuleM r = RuleM
{ runRuleM :: DynFlags -> InScopeEnv -> [CoreExpr] -> Maybe r }
instance Monad RuleM where
return x = RuleM $ \_ _ _ -> Just x
RuleM f >>= g = RuleM $ \dflags iu e -> case f dflags iu e of
Nothing -> Nothing
Just r -> runRuleM (g r) dflags iu e
fail _ = mzero
instance MonadPlus RuleM where
mzero = RuleM $ \_ _ _ -> Nothing
mplus (RuleM f1) (RuleM f2) = RuleM $ \dflags iu args ->
f1 dflags iu args `mplus` f2 dflags iu args
instance HasDynFlags RuleM where
getDynFlags = RuleM $ \dflags _ _ -> Just dflags
liftMaybe :: Maybe a -> RuleM a
liftMaybe Nothing = mzero
liftMaybe (Just x) = return x
liftLit :: (Literal -> Literal) -> RuleM CoreExpr
liftLit f = liftLitDynFlags (const f)
liftLitDynFlags :: (DynFlags -> Literal -> Literal) -> RuleM CoreExpr
liftLitDynFlags f = do
dflags <- getDynFlags
[Lit lit] <- getArgs
return $ Lit (f dflags lit)
removeOp32 :: RuleM CoreExpr
#if WORD_SIZE_IN_BITS == 32
removeOp32 = do
[e] <- getArgs
return e
#else
removeOp32 = mzero
#endif
getArgs :: RuleM [CoreExpr]
getArgs = RuleM $ \_ _ args -> Just args
getInScopeEnv :: RuleM InScopeEnv
getInScopeEnv = RuleM $ \_ iu _ -> Just iu
getLiteral :: Int -> RuleM Literal
getLiteral n = RuleM $ \_ _ exprs -> case drop n exprs of
(Lit l:_) -> Just l
_ -> Nothing
unaryLit :: (DynFlags -> Literal -> Maybe CoreExpr) -> RuleM CoreExpr
unaryLit op = do
dflags <- getDynFlags
[Lit l] <- getArgs
liftMaybe $ op dflags (convFloating dflags l)
binaryLit :: (DynFlags -> Literal -> Literal -> Maybe CoreExpr) -> RuleM CoreExpr
binaryLit op = do
dflags <- getDynFlags
[Lit l1, Lit l2] <- getArgs
liftMaybe $ op dflags (convFloating dflags l1) (convFloating dflags l2)
binaryCmpLit :: (forall a . Ord a => a -> a -> Bool) -> RuleM CoreExpr
binaryCmpLit op = do
dflags <- getDynFlags
binaryLit (\_ -> cmpOp dflags op)
leftIdentity :: Literal -> RuleM CoreExpr
leftIdentity id_lit = leftIdentityDynFlags (const id_lit)
rightIdentity :: Literal -> RuleM CoreExpr
rightIdentity id_lit = rightIdentityDynFlags (const id_lit)
identity :: Literal -> RuleM CoreExpr
identity lit = leftIdentity lit `mplus` rightIdentity lit
leftIdentityDynFlags :: (DynFlags -> Literal) -> RuleM CoreExpr
leftIdentityDynFlags id_lit = do
dflags <- getDynFlags
[Lit l1, e2] <- getArgs
guard $ l1 == id_lit dflags
return e2
rightIdentityDynFlags :: (DynFlags -> Literal) -> RuleM CoreExpr
rightIdentityDynFlags id_lit = do
dflags <- getDynFlags
[e1, Lit l2] <- getArgs
guard $ l2 == id_lit dflags
return e1
identityDynFlags :: (DynFlags -> Literal) -> RuleM CoreExpr
identityDynFlags lit = leftIdentityDynFlags lit `mplus` rightIdentityDynFlags lit
leftZero :: (DynFlags -> Literal) -> RuleM CoreExpr
leftZero zero = do
dflags <- getDynFlags
[Lit l1, _] <- getArgs
guard $ l1 == zero dflags
return $ Lit l1
rightZero :: (DynFlags -> Literal) -> RuleM CoreExpr
rightZero zero = do
dflags <- getDynFlags
[_, Lit l2] <- getArgs
guard $ l2 == zero dflags
return $ Lit l2
zeroElem :: (DynFlags -> Literal) -> RuleM CoreExpr
zeroElem lit = leftZero lit `mplus` rightZero lit
equalArgs :: RuleM ()
equalArgs = do
[e1, e2] <- getArgs
guard $ e1 `cheapEqExpr` e2
nonZeroLit :: Int -> RuleM ()
nonZeroLit n = getLiteral n >>= guard . not . isZeroLit
convFloating :: DynFlags -> Literal -> Literal
convFloating dflags (MachFloat f) | not (gopt Opt_ExcessPrecision dflags) =
MachFloat (toRational (fromRational f :: Float ))
convFloating dflags (MachDouble d) | not (gopt Opt_ExcessPrecision dflags) =
MachDouble (toRational (fromRational d :: Double))
convFloating _ l = l
guardFloatDiv :: RuleM ()
guardFloatDiv = do
[Lit (MachFloat f1), Lit (MachFloat f2)] <- getArgs
guard $ (f1 /=0 || f2 > 0)
&& f2 /= 0
guardDoubleDiv :: RuleM ()
guardDoubleDiv = do
[Lit (MachDouble d1), Lit (MachDouble d2)] <- getArgs
guard $ (d1 /=0 || d2 > 0)
&& d2 /= 0
strengthReduction :: Literal -> PrimOp -> RuleM CoreExpr
strengthReduction two_lit add_op = do
arg <- msum [ do [arg, Lit mult_lit] <- getArgs
guard (mult_lit == two_lit)
return arg
, do [Lit mult_lit, arg] <- getArgs
guard (mult_lit == two_lit)
return arg ]
return $ Var (mkPrimOpId add_op) `App` arg `App` arg
trueValInt, falseValInt :: DynFlags -> Expr CoreBndr
trueValInt dflags = Lit $ onei dflags
falseValInt dflags = Lit $ zeroi dflags
trueValBool, falseValBool :: Expr CoreBndr
trueValBool = Var trueDataConId
falseValBool = Var falseDataConId
ltVal, eqVal, gtVal :: Expr CoreBndr
ltVal = Var ltDataConId
eqVal = Var eqDataConId
gtVal = Var gtDataConId
mkIntVal :: DynFlags -> Integer -> Expr CoreBndr
mkIntVal dflags i = Lit (mkMachInt dflags i)
mkWordVal :: DynFlags -> Integer -> Expr CoreBndr
mkWordVal dflags w = Lit (mkMachWord dflags w)
mkFloatVal :: DynFlags -> Rational -> Expr CoreBndr
mkFloatVal dflags f = Lit (convFloating dflags (MachFloat f))
mkDoubleVal :: DynFlags -> Rational -> Expr CoreBndr
mkDoubleVal dflags d = Lit (convFloating dflags (MachDouble d))
matchPrimOpId :: PrimOp -> Id -> RuleM ()
matchPrimOpId op id = do
op' <- liftMaybe $ isPrimOpId_maybe id
guard $ op == op'
\end{code}
%************************************************************************
%* *
\subsection{Special rules for seq, tagToEnum, dataToTag}
%* *
%************************************************************************
Note [tagToEnum#]
~~~~~~~~~~~~~~~~~
Nasty check to ensure that tagToEnum# is applied to a type that is an
enumeration TyCon. Unification may refine the type later, but this
check won't see that, alas. It's crude but it works.
Here's are two cases that should fail
f :: forall a. a
f = tagToEnum# 0 -- Can't do tagToEnum# at a type variable
g :: Int
g = tagToEnum# 0 -- Int is not an enumeration
We used to make this check in the type inference engine, but it's quite
ugly to do so, because the delayed constraint solving means that we don't
really know what's going on until the end. It's very much a corner case
because we don't expect the user to call tagToEnum# at all; we merely
generate calls in derived instances of Enum. So we compromise: a
rewrite rule rewrites a bad instance of tagToEnum# to an error call,
and emits a warning.
\begin{code}
tagToEnumRule :: RuleM CoreExpr
tagToEnumRule = do
[Type ty, Lit (MachInt i)] <- getArgs
case splitTyConApp_maybe ty of
Just (tycon, tc_args) | isEnumerationTyCon tycon -> do
let tag = fromInteger i
correct_tag dc = (dataConTag dc fIRST_TAG) == tag
(dc:rest) <- return $ filter correct_tag (tyConDataCons_maybe tycon `orElse` [])
ASSERT(null rest) return ()
return $ mkTyApps (Var (dataConWorkId dc)) tc_args
_ -> WARN( True, ptext (sLit "tagToEnum# on non-enumeration type") <+> ppr ty )
return $ mkRuntimeErrorApp rUNTIME_ERROR_ID ty "tagToEnum# on non-enumeration type"
\end{code}
For dataToTag#, we can reduce if either
(a) the argument is a constructor
(b) the argument is a variable whose unfolding is a known constructor
\begin{code}
dataToTagRule :: RuleM CoreExpr
dataToTagRule = a `mplus` b
where
a = do
[Type ty1, Var tag_to_enum `App` Type ty2 `App` tag] <- getArgs
guard $ tag_to_enum `hasKey` tagToEnumKey
guard $ ty1 `eqType` ty2
return tag
b = do
dflags <- getDynFlags
[_, val_arg] <- getArgs
in_scope <- getInScopeEnv
(dc,_,_) <- liftMaybe $ exprIsConApp_maybe in_scope val_arg
ASSERT( not (isNewTyCon (dataConTyCon dc)) ) return ()
return $ mkIntVal dflags (toInteger (dataConTag dc fIRST_TAG))
\end{code}
%************************************************************************
%* *
\subsection{Rules for seq# and spark#}
%* *
%************************************************************************
\begin{code}
seqRule :: RuleM CoreExpr
seqRule = do
[ty_a, Type ty_s, a, s] <- getArgs
guard $ exprIsHNF a
return $ mkConApp (tupleCon UnboxedTuple 2)
[Type (mkStatePrimTy ty_s), ty_a, s, a]
sparkRule :: RuleM CoreExpr
sparkRule = seqRule
\end{code}
%************************************************************************
%* *
\subsection{Built in rules}
%* *
%************************************************************************
Note [Scoping for Builtin rules]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When compiling a (base-package) module that defines one of the
functions mentioned in the RHS of a built-in rule, there's a danger
that we'll see
f = ...(eq String x)....
....and lower down...
eqString = ...
Then a rewrite would give
f = ...(eqString x)...
....and lower down...
eqString = ...
and lo, eqString is not in scope. This only really matters when we get to code
generation. With -O we do a GlomBinds step that does a new SCC analysis on the whole
set of bindings, which sorts out the dependency. Without -O we don't do any rule
rewriting so again we are fine.
(This whole thing doesn't show up for non-built-in rules because their dependencies
are explicit.)
\begin{code}
builtinRules :: [CoreRule]
builtinRules
= [BuiltinRule { ru_name = fsLit "AppendLitString",
ru_fn = unpackCStringFoldrName,
ru_nargs = 4, ru_try = \_ _ _ -> match_append_lit },
BuiltinRule { ru_name = fsLit "EqString", ru_fn = eqStringName,
ru_nargs = 2, ru_try = \dflags _ _ -> match_eq_string dflags },
BuiltinRule { ru_name = fsLit "Inline", ru_fn = inlineIdName,
ru_nargs = 2, ru_try = \_ _ _ -> match_inline },
BuiltinRule { ru_name = fsLit "MagicSingI", ru_fn = idName magicSingIId,
ru_nargs = 3, ru_try = \_ _ _ -> match_magicSingI }
]
++ builtinIntegerRules
builtinIntegerRules :: [CoreRule]
builtinIntegerRules =
[rule_IntToInteger "smallInteger" smallIntegerName,
rule_WordToInteger "wordToInteger" wordToIntegerName,
rule_Int64ToInteger "int64ToInteger" int64ToIntegerName,
rule_Word64ToInteger "word64ToInteger" word64ToIntegerName,
rule_convert "integerToWord" integerToWordName mkWordLitWord,
rule_convert "integerToInt" integerToIntName mkIntLitInt,
rule_convert "integerToWord64" integerToWord64Name (\_ -> mkWord64LitWord64),
rule_convert "integerToInt64" integerToInt64Name (\_ -> mkInt64LitInt64),
rule_binop "plusInteger" plusIntegerName (+),
rule_binop "minusInteger" minusIntegerName (),
rule_binop "timesInteger" timesIntegerName (*),
rule_unop "negateInteger" negateIntegerName negate,
rule_binop_Prim "eqInteger#" eqIntegerPrimName (==),
rule_binop_Prim "neqInteger#" neqIntegerPrimName (/=),
rule_unop "absInteger" absIntegerName abs,
rule_unop "signumInteger" signumIntegerName signum,
rule_binop_Prim "leInteger#" leIntegerPrimName (<=),
rule_binop_Prim "gtInteger#" gtIntegerPrimName (>),
rule_binop_Prim "ltInteger#" ltIntegerPrimName (<),
rule_binop_Prim "geInteger#" geIntegerPrimName (>=),
rule_binop_Ordering "compareInteger" compareIntegerName compare,
rule_encodeFloat "encodeFloatInteger" encodeFloatIntegerName mkFloatLitFloat,
rule_convert "floatFromInteger" floatFromIntegerName (\_ -> mkFloatLitFloat),
rule_encodeFloat "encodeDoubleInteger" encodeDoubleIntegerName mkDoubleLitDouble,
rule_decodeDouble "decodeDoubleInteger" decodeDoubleIntegerName,
rule_convert "doubleFromInteger" doubleFromIntegerName (\_ -> mkDoubleLitDouble),
rule_rationalTo "rationalToFloat" rationalToFloatName mkFloatExpr,
rule_rationalTo "rationalToDouble" rationalToDoubleName mkDoubleExpr,
rule_binop "gcdInteger" gcdIntegerName gcd,
rule_binop "lcmInteger" lcmIntegerName lcm,
rule_binop "andInteger" andIntegerName (.&.),
rule_binop "orInteger" orIntegerName (.|.),
rule_binop "xorInteger" xorIntegerName xor,
rule_unop "complementInteger" complementIntegerName complement,
rule_Int_binop "shiftLInteger" shiftLIntegerName shiftL,
rule_Int_binop "shiftRInteger" shiftRIntegerName shiftR,
rule_divop_one "quotInteger" quotIntegerName quot,
rule_divop_one "remInteger" remIntegerName rem,
rule_divop_one "divInteger" divIntegerName div,
rule_divop_one "modInteger" modIntegerName mod,
rule_divop_both "divModInteger" divModIntegerName divMod,
rule_divop_both "quotRemInteger" quotRemIntegerName quotRem,
rule_XToIntegerToX "smallIntegerToInt" integerToIntName smallIntegerName,
rule_XToIntegerToX "wordToIntegerToWord" integerToWordName wordToIntegerName,
rule_XToIntegerToX "int64ToIntegerToInt64" integerToInt64Name int64ToIntegerName,
rule_XToIntegerToX "word64ToIntegerToWord64" integerToWord64Name word64ToIntegerName,
rule_smallIntegerTo "smallIntegerToWord" integerToWordName Int2WordOp,
rule_smallIntegerTo "smallIntegerToFloat" floatFromIntegerName Int2FloatOp,
rule_smallIntegerTo "smallIntegerToDouble" doubleFromIntegerName Int2DoubleOp
]
where rule_convert str name convert
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 1,
ru_try = match_Integer_convert convert }
rule_IntToInteger str name
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 1,
ru_try = match_IntToInteger }
rule_WordToInteger str name
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 1,
ru_try = match_WordToInteger }
rule_Int64ToInteger str name
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 1,
ru_try = match_Int64ToInteger }
rule_Word64ToInteger str name
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 1,
ru_try = match_Word64ToInteger }
rule_unop str name op
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 1,
ru_try = match_Integer_unop op }
rule_binop str name op
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 2,
ru_try = match_Integer_binop op }
rule_divop_both str name op
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 2,
ru_try = match_Integer_divop_both op }
rule_divop_one str name op
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 2,
ru_try = match_Integer_divop_one op }
rule_Int_binop str name op
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 2,
ru_try = match_Integer_Int_binop op }
rule_binop_Prim str name op
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 2,
ru_try = match_Integer_binop_Prim op }
rule_binop_Ordering str name op
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 2,
ru_try = match_Integer_binop_Ordering op }
rule_encodeFloat str name op
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 2,
ru_try = match_Integer_Int_encodeFloat op }
rule_decodeDouble str name
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 1,
ru_try = match_decodeDouble }
rule_XToIntegerToX str name toIntegerName
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 1,
ru_try = match_XToIntegerToX toIntegerName }
rule_smallIntegerTo str name primOp
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 1,
ru_try = match_smallIntegerTo primOp }
rule_rationalTo str name mkLit
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 2,
ru_try = match_rationalTo mkLit }
match_append_lit :: [Expr CoreBndr] -> Maybe (Expr CoreBndr)
match_append_lit [Type ty1,
Lit (MachStr s1),
c1,
Var unpk `App` Type ty2
`App` Lit (MachStr s2)
`App` c2
`App` n
]
| unpk `hasKey` unpackCStringFoldrIdKey &&
c1 `cheapEqExpr` c2
= ASSERT( ty1 `eqType` ty2 )
Just (Var unpk `App` Type ty1
`App` Lit (MachStr (s1 `BS.append` s2))
`App` c1
`App` n)
match_append_lit _ = Nothing
match_eq_string :: DynFlags -> [Expr CoreBndr] -> Maybe (Expr CoreBndr)
match_eq_string _ [Var unpk1 `App` Lit (MachStr s1),
Var unpk2 `App` Lit (MachStr s2)]
| unpk1 `hasKey` unpackCStringIdKey,
unpk2 `hasKey` unpackCStringIdKey
= Just (if s1 == s2 then trueValBool else falseValBool)
match_eq_string _ _ = Nothing
match_inline :: [Expr CoreBndr] -> Maybe (Expr CoreBndr)
match_inline (Type _ : e : _)
| (Var f, args1) <- collectArgs e,
Just unf <- maybeUnfoldingTemplate (realIdUnfolding f)
= Just (mkApps unf args1)
match_inline _ = Nothing
match_magicSingI :: [Expr CoreBndr] -> Maybe (Expr CoreBndr)
match_magicSingI (Type t : e : Lam b _ : _)
| ((_ : _ : fu : _),_) <- splitFunTys t
, (sI_type,_) <- splitFunTy fu
, Just (sI_tc,xs) <- splitTyConApp_maybe sI_type
, Just (_,_,co) <- unwrapNewTyCon_maybe sI_tc
= Just $ let f = setVarType b fu
in Lam f $ Var f `App` Cast e (mkSymCo (mkUnbranchedAxInstCo Representational co xs))
match_magicSingI _ = Nothing
match_IntToInteger :: RuleFun
match_IntToInteger _ id_unf fn [xl]
| Just (MachInt x) <- exprIsLiteral_maybe id_unf xl
= case idType fn of
FunTy _ integerTy ->
Just (Lit (LitInteger x integerTy))
_ ->
panic "match_IntToInteger: Id has the wrong type"
match_IntToInteger _ _ _ _ = Nothing
match_WordToInteger :: RuleFun
match_WordToInteger _ id_unf id [xl]
| Just (MachWord x) <- exprIsLiteral_maybe id_unf xl
= case idType id of
FunTy _ integerTy ->
Just (Lit (LitInteger x integerTy))
_ ->
panic "match_WordToInteger: Id has the wrong type"
match_WordToInteger _ _ _ _ = Nothing
match_Int64ToInteger :: RuleFun
match_Int64ToInteger _ id_unf id [xl]
| Just (MachInt64 x) <- exprIsLiteral_maybe id_unf xl
= case idType id of
FunTy _ integerTy ->
Just (Lit (LitInteger x integerTy))
_ ->
panic "match_Int64ToInteger: Id has the wrong type"
match_Int64ToInteger _ _ _ _ = Nothing
match_Word64ToInteger :: RuleFun
match_Word64ToInteger _ id_unf id [xl]
| Just (MachWord64 x) <- exprIsLiteral_maybe id_unf xl
= case idType id of
FunTy _ integerTy ->
Just (Lit (LitInteger x integerTy))
_ ->
panic "match_Word64ToInteger: Id has the wrong type"
match_Word64ToInteger _ _ _ _ = Nothing
match_Integer_convert :: Num a
=> (DynFlags -> a -> Expr CoreBndr)
-> RuleFun
match_Integer_convert convert dflags id_unf _ [xl]
| Just (LitInteger x _) <- exprIsLiteral_maybe id_unf xl
= Just (convert dflags (fromInteger x))
match_Integer_convert _ _ _ _ _ = Nothing
match_Integer_unop :: (Integer -> Integer) -> RuleFun
match_Integer_unop unop _ id_unf _ [xl]
| Just (LitInteger x i) <- exprIsLiteral_maybe id_unf xl
= Just (Lit (LitInteger (unop x) i))
match_Integer_unop _ _ _ _ _ = Nothing
match_Integer_binop :: (Integer -> Integer -> Integer) -> RuleFun
match_Integer_binop binop _ id_unf _ [xl,yl]
| Just (LitInteger x i) <- exprIsLiteral_maybe id_unf xl
, Just (LitInteger y _) <- exprIsLiteral_maybe id_unf yl
= Just (Lit (LitInteger (x `binop` y) i))
match_Integer_binop _ _ _ _ _ = Nothing
match_Integer_divop_both
:: (Integer -> Integer -> (Integer, Integer)) -> RuleFun
match_Integer_divop_both divop _ id_unf _ [xl,yl]
| Just (LitInteger x t) <- exprIsLiteral_maybe id_unf xl
, Just (LitInteger y _) <- exprIsLiteral_maybe id_unf yl
, y /= 0
, (r,s) <- x `divop` y
= Just $ mkConApp (tupleCon UnboxedTuple 2)
[Type t,
Type t,
Lit (LitInteger r t),
Lit (LitInteger s t)]
match_Integer_divop_both _ _ _ _ _ = Nothing
match_Integer_divop_one :: (Integer -> Integer -> Integer) -> RuleFun
match_Integer_divop_one divop _ id_unf _ [xl,yl]
| Just (LitInteger x i) <- exprIsLiteral_maybe id_unf xl
, Just (LitInteger y _) <- exprIsLiteral_maybe id_unf yl
, y /= 0
= Just (Lit (LitInteger (x `divop` y) i))
match_Integer_divop_one _ _ _ _ _ = Nothing
match_Integer_Int_binop :: (Integer -> Int -> Integer) -> RuleFun
match_Integer_Int_binop binop _ id_unf _ [xl,yl]
| Just (LitInteger x i) <- exprIsLiteral_maybe id_unf xl
, Just (MachInt y) <- exprIsLiteral_maybe id_unf yl
= Just (Lit (LitInteger (x `binop` fromIntegral y) i))
match_Integer_Int_binop _ _ _ _ _ = Nothing
match_Integer_binop_Prim :: (Integer -> Integer -> Bool) -> RuleFun
match_Integer_binop_Prim binop dflags id_unf _ [xl, yl]
| Just (LitInteger x _) <- exprIsLiteral_maybe id_unf xl
, Just (LitInteger y _) <- exprIsLiteral_maybe id_unf yl
= Just (if x `binop` y then trueValInt dflags else falseValInt dflags)
match_Integer_binop_Prim _ _ _ _ _ = Nothing
match_Integer_binop_Ordering :: (Integer -> Integer -> Ordering) -> RuleFun
match_Integer_binop_Ordering binop _ id_unf _ [xl, yl]
| Just (LitInteger x _) <- exprIsLiteral_maybe id_unf xl
, Just (LitInteger y _) <- exprIsLiteral_maybe id_unf yl
= Just $ case x `binop` y of
LT -> ltVal
EQ -> eqVal
GT -> gtVal
match_Integer_binop_Ordering _ _ _ _ _ = Nothing
match_Integer_Int_encodeFloat :: RealFloat a
=> (a -> Expr CoreBndr)
-> RuleFun
match_Integer_Int_encodeFloat mkLit _ id_unf _ [xl,yl]
| Just (LitInteger x _) <- exprIsLiteral_maybe id_unf xl
, Just (MachInt y) <- exprIsLiteral_maybe id_unf yl
= Just (mkLit $ encodeFloat x (fromInteger y))
match_Integer_Int_encodeFloat _ _ _ _ _ = Nothing
match_rationalTo :: RealFloat a
=> (a -> Expr CoreBndr)
-> RuleFun
match_rationalTo mkLit _ id_unf _ [xl, yl]
| Just (LitInteger x _) <- exprIsLiteral_maybe id_unf xl
, Just (LitInteger y _) <- exprIsLiteral_maybe id_unf yl
, y /= 0
= Just (mkLit (fromRational (x % y)))
match_rationalTo _ _ _ _ _ = Nothing
match_decodeDouble :: RuleFun
match_decodeDouble _ id_unf fn [xl]
| Just (MachDouble x) <- exprIsLiteral_maybe id_unf xl
= case idType fn of
FunTy _ (TyConApp _ [integerTy, intHashTy]) ->
case decodeFloat (fromRational x :: Double) of
(y, z) ->
Just $ mkConApp (tupleCon UnboxedTuple 2)
[Type integerTy,
Type intHashTy,
Lit (LitInteger y integerTy),
Lit (MachInt (toInteger z))]
_ ->
panic "match_decodeDouble: Id has the wrong type"
match_decodeDouble _ _ _ _ = Nothing
match_XToIntegerToX :: Name -> RuleFun
match_XToIntegerToX n _ _ _ [App (Var x) y]
| idName x == n
= Just y
match_XToIntegerToX _ _ _ _ _ = Nothing
match_smallIntegerTo :: PrimOp -> RuleFun
match_smallIntegerTo primOp _ _ _ [App (Var x) y]
| idName x == smallIntegerName
= Just $ App (Var (mkPrimOpId primOp)) y
match_smallIntegerTo _ _ _ _ _ = Nothing
\end{code}