%
% (c) The University of Glasgow 2006
%
\begin{code}
module OptCoercion ( optCoercion, checkAxInstCo ) where
#include "HsVersions.h"
import Coercion
import Type hiding( substTyVarBndr, substTy, extendTvSubst )
import TcType ( exactTyVarsOfType )
import TyCon
import CoAxiom
import Var
import VarSet
import FamInstEnv ( flattenTys )
import VarEnv
import StaticFlags ( opt_NoOptCoercion )
import Outputable
import Pair
import Maybes
import FastString
import Util
import Unify
import ListSetOps
import InstEnv
\end{code}
%************************************************************************
%* *
Optimising coercions
%* *
%************************************************************************
Note [Subtle shadowing in coercions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Supose we optimising a coercion
optCoercion (forall (co_X5:t1~t2). ...co_B1...)
The co_X5 is a wild-card; the bound variable of a coercion for-all
should never appear in the body of the forall. Indeed we often
write it like this
optCoercion ( (t1~t2) => ...co_B1... )
Just because it's a wild-card doesn't mean we are free to choose
whatever variable we like. For example it'd be wrong for optCoercion
to return
forall (co_B1:t1~t2). ...co_B1...
because now the co_B1 (which is really free) has been captured, and
subsequent substitutions will go wrong. That's why we can't use
mkCoPredTy in the ForAll case, where this note appears.
\begin{code}
optCoercion :: CvSubst -> Coercion -> NormalCo
optCoercion env co
| opt_NoOptCoercion = substCo env co
| otherwise = opt_co env False Nothing co
type NormalCo = Coercion
type NormalNonIdCo = NormalCo
opt_co, opt_co' :: CvSubst
-> Bool
-> Maybe Role
-> Coercion
-> NormalCo
opt_co = opt_co'
opt_co' env _ mrole (Refl r ty) = Refl (mrole `orElse` r) (substTy env ty)
opt_co' env sym mrole co
| mrole == Just Phantom
|| coercionRole co == Phantom
, Pair ty1 ty2 <- coercionKind co
= if sym
then opt_univ env Phantom ty2 ty1
else opt_univ env Phantom ty1 ty2
opt_co' env sym mrole (SymCo co) = opt_co env (not sym) mrole co
opt_co' env sym mrole (TyConAppCo r tc cos)
= case mrole of
Nothing -> mkTyConAppCo r tc (map (opt_co env sym Nothing) cos)
Just r' -> mkTyConAppCo r' tc (zipWith (opt_co env sym)
(map Just (tyConRolesX r' tc)) cos)
opt_co' env sym mrole (AppCo co1 co2) = mkAppCo (opt_co env sym mrole co1)
(opt_co env sym Nothing co2)
opt_co' env sym mrole (ForAllCo tv co)
= case substTyVarBndr env tv of
(env', tv') -> mkForAllCo tv' (opt_co env' sym mrole co)
opt_co' env sym mrole (CoVarCo cv)
| Just co <- lookupCoVar env cv
= opt_co (zapCvSubstEnv env) sym mrole co
| Just cv1 <- lookupInScope (getCvInScope env) cv
= ASSERT( isCoVar cv1 ) wrapRole mrole cv_role $ wrapSym sym (CoVarCo cv1)
| otherwise = WARN( True, ptext (sLit "opt_co: not in scope:") <+> ppr cv $$ ppr env)
ASSERT( isCoVar cv )
wrapRole mrole cv_role $ wrapSym sym (CoVarCo cv)
where cv_role = coVarRole cv
opt_co' env sym mrole (AxiomInstCo con ind cos)
= wrapRole mrole (coAxiomRole con) $
wrapSym sym $
AxiomInstCo con ind (map (opt_co env False Nothing) cos)
opt_co' env sym mrole (UnivCo r oty1 oty2)
= opt_univ env role a b
where
(a,b) = if sym then (oty2,oty1) else (oty1,oty2)
role = mrole `orElse` r
opt_co' env sym mrole (TransCo co1 co2)
| sym = opt_trans in_scope opt_co2 opt_co1
| otherwise = opt_trans in_scope opt_co1 opt_co2
where
opt_co1 = opt_co env sym mrole co1
opt_co2 = opt_co env sym mrole co2
in_scope = getCvInScope env
opt_co' env sym mrole (NthCo n (TyConAppCo _ _ cos))
= opt_co env sym mrole (getNth cos n)
opt_co' env sym mrole (NthCo n co)
| TyConAppCo _ _tc cos <- co'
, isDecomposableTyCon tc
= ASSERT( n < length cos )
ASSERT( _tc == tc )
let resultCo = cos !! n
resultRole = coercionRole resultCo in
case (mrole, resultRole) of
(Just Representational, Nominal) -> opt_co (zapCvSubstEnv env) False mrole resultCo
_ -> resultCo
| otherwise
= wrap_role $ NthCo n co'
where
wrap_role wrapped = wrapRole mrole (coercionRole wrapped) wrapped
tc = tyConAppTyCon $ pFst $ coercionKind co
co' = opt_co env sym mrole' co
mrole' = case mrole of
Just Representational
| Representational <- nthRole Representational tc n
-> Just Representational
_ -> Nothing
opt_co' env sym mrole (LRCo lr co)
| Just pr_co <- splitAppCo_maybe co
= opt_co env sym mrole (pickLR lr pr_co)
| Just pr_co <- splitAppCo_maybe co'
= if mrole == Just Representational
then opt_co (zapCvSubstEnv env) False mrole (pickLR lr pr_co)
else pickLR lr pr_co
| otherwise
= wrapRole mrole Nominal $ LRCo lr co'
where
co' = opt_co env sym Nothing co
opt_co' env sym mrole (InstCo co ty)
| Just (tv, co_body) <- splitForAllCo_maybe co
= opt_co (extendTvSubst env tv ty') sym mrole co_body
| Just (tv, co'_body) <- splitForAllCo_maybe co'
= substCoWithTy (getCvInScope env) tv ty' co'_body
| otherwise = InstCo co' ty'
where
co' = opt_co env sym mrole co
ty' = substTy env ty
opt_co' env sym _ (SubCo co) = opt_co env sym (Just Representational) co
opt_univ :: CvSubst -> Role -> Type -> Type -> Coercion
opt_univ env role oty1 oty2
| Just (tc1, tys1) <- splitTyConApp_maybe oty1
, Just (tc2, tys2) <- splitTyConApp_maybe oty2
, tc1 == tc2
= mkTyConAppCo role tc1 (zipWith3 (opt_univ env) (tyConRolesX role tc1) tys1 tys2)
| Just (l1, r1) <- splitAppTy_maybe oty1
, Just (l2, r2) <- splitAppTy_maybe oty2
, typeKind l1 `eqType` typeKind l2
= let role' = if role == Phantom then Phantom else Nominal in
mkAppCo (opt_univ env role l1 l2) (opt_univ env role' r1 r2)
| Just (tv1, ty1) <- splitForAllTy_maybe oty1
, Just (tv2, ty2) <- splitForAllTy_maybe oty2
, tyVarKind tv1 `eqType` tyVarKind tv2
= case substTyVarBndr2 env tv1 tv2 of { (env1, env2, tv') ->
let ty1' = substTy env1 ty1
ty2' = substTy env2 ty2 in
mkForAllCo tv' (opt_univ (zapCvSubstEnv2 env1 env2) role ty1' ty2') }
| otherwise
= mkUnivCo role (substTy env oty1) (substTy env oty2)
opt_transList :: InScopeSet -> [NormalCo] -> [NormalCo] -> [NormalCo]
opt_transList is = zipWith (opt_trans is)
opt_trans :: InScopeSet -> NormalCo -> NormalCo -> NormalCo
opt_trans is co1 co2
| isReflCo co1 = co2
| otherwise = opt_trans1 is co1 co2
opt_trans1 :: InScopeSet -> NormalNonIdCo -> NormalCo -> NormalCo
opt_trans1 is co1 co2
| isReflCo co2 = co1
| otherwise = opt_trans2 is co1 co2
opt_trans2 :: InScopeSet -> NormalNonIdCo -> NormalNonIdCo -> NormalCo
opt_trans2 is (TransCo co1a co1b) co2
= opt_trans is co1a (opt_trans is co1b co2)
opt_trans2 is co1 co2
| Just co <- opt_trans_rule is co1 co2
= co
opt_trans2 is co1 (TransCo co2a co2b)
| Just co1_2a <- opt_trans_rule is co1 co2a
= if isReflCo co1_2a
then co2b
else opt_trans1 is co1_2a co2b
opt_trans2 _ co1 co2
= mkTransCo co1 co2
opt_trans_rule :: InScopeSet -> NormalNonIdCo -> NormalNonIdCo -> Maybe NormalCo
opt_trans_rule is in_co1@(NthCo d1 co1) in_co2@(NthCo d2 co2)
| d1 == d2
, co1 `compatible_co` co2
= fireTransRule "PushNth" in_co1 in_co2 $
mkNthCo d1 (opt_trans is co1 co2)
opt_trans_rule is in_co1@(LRCo d1 co1) in_co2@(LRCo d2 co2)
| d1 == d2
, co1 `compatible_co` co2
= fireTransRule "PushLR" in_co1 in_co2 $
mkLRCo d1 (opt_trans is co1 co2)
opt_trans_rule is in_co1@(InstCo co1 ty1) in_co2@(InstCo co2 ty2)
| ty1 `eqType` ty2
, co1 `compatible_co` co2
= fireTransRule "TrPushInst" in_co1 in_co2 $
mkInstCo (opt_trans is co1 co2) ty1
opt_trans_rule is in_co1@(TyConAppCo r1 tc1 cos1) in_co2@(TyConAppCo r2 tc2 cos2)
| tc1 == tc2
= ASSERT( r1 == r2 )
fireTransRule "PushTyConApp" in_co1 in_co2 $
TyConAppCo r1 tc1 (opt_transList is cos1 cos2)
opt_trans_rule is in_co1@(AppCo co1a co1b) in_co2@(AppCo co2a co2b)
= fireTransRule "TrPushApp" in_co1 in_co2 $
mkAppCo (opt_trans is co1a co2a) (opt_trans is co1b co2b)
opt_trans_rule is co1@(TyConAppCo r tc cos1) co2
| Just cos2 <- etaTyConAppCo_maybe tc co2
= ASSERT( length cos1 == length cos2 )
fireTransRule "EtaCompL" co1 co2 $
TyConAppCo r tc (opt_transList is cos1 cos2)
opt_trans_rule is co1 co2@(TyConAppCo r tc cos2)
| Just cos1 <- etaTyConAppCo_maybe tc co1
= ASSERT( length cos1 == length cos2 )
fireTransRule "EtaCompR" co1 co2 $
TyConAppCo r tc (opt_transList is cos1 cos2)
opt_trans_rule is co1@(AppCo co1a co1b) co2
| Just (co2a,co2b) <- etaAppCo_maybe co2
= fireTransRule "EtaAppL" co1 co2 $
mkAppCo (opt_trans is co1a co2a) (opt_trans is co1b co2b)
opt_trans_rule is co1 co2@(AppCo co2a co2b)
| Just (co1a,co1b) <- etaAppCo_maybe co1
= fireTransRule "EtaAppR" co1 co2 $
mkAppCo (opt_trans is co1a co2a) (opt_trans is co1b co2b)
opt_trans_rule is co1 co2
| Just (tv1,r1) <- splitForAllCo_maybe co1
, Just (tv2,r2) <- etaForAllCo_maybe co2
, let r2' = substCoWithTy is' tv2 (mkTyVarTy tv1) r2
is' = is `extendInScopeSet` tv1
= fireTransRule "EtaAllL" co1 co2 $
mkForAllCo tv1 (opt_trans2 is' r1 r2')
| Just (tv2,r2) <- splitForAllCo_maybe co2
, Just (tv1,r1) <- etaForAllCo_maybe co1
, let r1' = substCoWithTy is' tv1 (mkTyVarTy tv2) r1
is' = is `extendInScopeSet` tv2
= fireTransRule "EtaAllR" co1 co2 $
mkForAllCo tv1 (opt_trans2 is' r1' r2)
opt_trans_rule is co1 co2
| Just (sym, con, ind, cos1) <- co1_is_axiom_maybe
, Just cos2 <- matchAxiom sym con ind co2
, True <- sym
, let newAxInst = AxiomInstCo con ind (opt_transList is (map mkSymCo cos2) cos1)
, Nothing <- checkAxInstCo newAxInst
= fireTransRule "TrPushSymAxR" co1 co2 $ SymCo newAxInst
| Just (sym, con, ind, cos1) <- co1_is_axiom_maybe
, Just cos2 <- matchAxiom sym con ind co2
, False <- sym
, let newAxInst = AxiomInstCo con ind (opt_transList is cos1 cos2)
, Nothing <- checkAxInstCo newAxInst
= fireTransRule "TrPushAxR" co1 co2 newAxInst
| Just (sym, con, ind, cos2) <- co2_is_axiom_maybe
, Just cos1 <- matchAxiom (not sym) con ind co1
, True <- sym
, let newAxInst = AxiomInstCo con ind (opt_transList is cos2 (map mkSymCo cos1))
, Nothing <- checkAxInstCo newAxInst
= fireTransRule "TrPushSymAxL" co1 co2 $ SymCo newAxInst
| Just (sym, con, ind, cos2) <- co2_is_axiom_maybe
, Just cos1 <- matchAxiom (not sym) con ind co1
, False <- sym
, let newAxInst = AxiomInstCo con ind (opt_transList is cos1 cos2)
, Nothing <- checkAxInstCo newAxInst
= fireTransRule "TrPushAxL" co1 co2 newAxInst
| Just (sym1, con1, ind1, cos1) <- co1_is_axiom_maybe
, Just (sym2, con2, ind2, cos2) <- co2_is_axiom_maybe
, con1 == con2
, ind1 == ind2
, sym1 == not sym2
, let branch = coAxiomNthBranch con1 ind1
qtvs = coAxBranchTyVars branch
lhs = coAxNthLHS con1 ind1
rhs = coAxBranchRHS branch
pivot_tvs = exactTyVarsOfType (if sym2 then rhs else lhs)
, all (`elemVarSet` pivot_tvs) qtvs
= fireTransRule "TrPushAxSym" co1 co2 $
if sym2
then liftCoSubstWith role qtvs (opt_transList is cos1 (map mkSymCo cos2)) lhs
else liftCoSubstWith role qtvs (opt_transList is (map mkSymCo cos1) cos2) rhs
where
co1_is_axiom_maybe = isAxiom_maybe co1
co2_is_axiom_maybe = isAxiom_maybe co2
role = coercionRole co1
opt_trans_rule _ co1 co2
| Pair ty1 _ <- coercionKind co1
, Pair _ ty2 <- coercionKind co2
, ty1 `eqType` ty2
= fireTransRule "RedTypeDirRefl" co1 co2 $
Refl (coercionRole co1) ty2
opt_trans_rule _ _ _ = Nothing
fireTransRule :: String -> Coercion -> Coercion -> Coercion -> Maybe Coercion
fireTransRule _rule _co1 _co2 res
=
Just res
\end{code}
Note [Conflict checking with AxiomInstCo]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following type family and axiom:
type family Equal (a :: k) (b :: k) :: Bool
type instance where
Equal a a = True
Equal a b = False
--
Equal :: forall k::BOX. k -> k -> Bool
axEqual :: { forall k::BOX. forall a::k. Equal k a a ~ True
; forall k::BOX. forall a::k. forall b::k. Equal k a b ~ False }
We wish to disallow (axEqual[1] <*> ) :: (Equal * Int Int ~ False) and that all is
OK. But, all is not OK: we want to use the first branch of the axiom in this case,
not the second. The problem is that the parameters of the first branch can unify with
the supplied coercions, thus meaning that the first branch should be taken. See also
Note [Branched instance checking] in types/FamInstEnv.lhs.
\begin{code}
checkAxInstCo :: Coercion -> Maybe CoAxBranch
checkAxInstCo (AxiomInstCo ax ind cos)
= let branch = coAxiomNthBranch ax ind
tvs = coAxBranchTyVars branch
incomps = coAxBranchIncomps branch
tys = map (pFst . coercionKind) cos
subst = zipOpenTvSubst tvs tys
target = Type.substTys subst (coAxBranchLHS branch)
in_scope = mkInScopeSet $
unionVarSets (map (tyVarsOfTypes . coAxBranchLHS) incomps)
flattened_target = flattenTys in_scope target in
check_no_conflict flattened_target incomps
where
check_no_conflict :: [Type] -> [CoAxBranch] -> Maybe CoAxBranch
check_no_conflict _ [] = Nothing
check_no_conflict flat (b@CoAxBranch { cab_lhs = lhs_incomp } : rest)
| SurelyApart <- tcUnifyTysFG instanceBindFun flat lhs_incomp
= check_no_conflict flat rest
| otherwise
= Just b
checkAxInstCo _ = Nothing
wrapSym :: Bool -> Coercion -> Coercion
wrapSym sym co | sym = SymCo co
| otherwise = co
wrapRole :: Maybe Role
-> Role
-> Coercion -> Coercion
wrapRole Nothing _ = id
wrapRole (Just desired) current = maybeSubCo2 desired current
substTyVarBndr2 :: CvSubst -> TyVar -> TyVar
-> (CvSubst, CvSubst, TyVar)
substTyVarBndr2 env tv1 tv2
= case substTyVarBndr env tv1 of
(env1, tv1') -> (env1, extendTvSubstAndInScope env tv2 (mkTyVarTy tv1'), tv1')
zapCvSubstEnv2 :: CvSubst -> CvSubst -> CvSubst
zapCvSubstEnv2 env1 env2 = mkCvSubst (is1 `unionInScope` is2) []
where is1 = getCvInScope env1
is2 = getCvInScope env2
isAxiom_maybe :: Coercion -> Maybe (Bool, CoAxiom Branched, Int, [Coercion])
isAxiom_maybe (SymCo co)
| Just (sym, con, ind, cos) <- isAxiom_maybe co
= Just (not sym, con, ind, cos)
isAxiom_maybe (AxiomInstCo con ind cos)
= Just (False, con, ind, cos)
isAxiom_maybe _ = Nothing
matchAxiom :: Bool
-> CoAxiom br -> Int -> Coercion -> Maybe [Coercion]
matchAxiom sym ax@(CoAxiom { co_ax_tc = tc }) ind co
= let (CoAxBranch { cab_tvs = qtvs
, cab_roles = roles
, cab_lhs = lhs
, cab_rhs = rhs }) = coAxiomNthBranch ax ind in
case liftCoMatch (mkVarSet qtvs) (if sym then (mkTyConApp tc lhs) else rhs) co of
Nothing -> Nothing
Just subst -> allMaybes (zipWith (liftCoSubstTyVar subst) roles qtvs)
compatible_co :: Coercion -> Coercion -> Bool
compatible_co co1 co2
= x1 `eqType` x2
where
Pair _ x1 = coercionKind co1
Pair x2 _ = coercionKind co2
etaForAllCo_maybe :: Coercion -> Maybe (TyVar, Coercion)
etaForAllCo_maybe co
| Just (tv, r) <- splitForAllCo_maybe co
= Just (tv, r)
| Pair ty1 ty2 <- coercionKind co
, Just (tv1, _) <- splitForAllTy_maybe ty1
, Just (tv2, _) <- splitForAllTy_maybe ty2
, tyVarKind tv1 `eqKind` tyVarKind tv2
= Just (tv1, mkInstCo co (mkTyVarTy tv1))
| otherwise
= Nothing
etaAppCo_maybe :: Coercion -> Maybe (Coercion,Coercion)
etaAppCo_maybe co
| Just (co1,co2) <- splitAppCo_maybe co
= Just (co1,co2)
| Nominal <- coercionRole co
, Pair ty1 ty2 <- coercionKind co
, Just (_,t1) <- splitAppTy_maybe ty1
, Just (_,t2) <- splitAppTy_maybe ty2
, typeKind t1 `eqType` typeKind t2
= Just (LRCo CLeft co, LRCo CRight co)
| otherwise
= Nothing
etaTyConAppCo_maybe :: TyCon -> Coercion -> Maybe [Coercion]
etaTyConAppCo_maybe tc (TyConAppCo _ tc2 cos2)
= ASSERT( tc == tc2 ) Just cos2
etaTyConAppCo_maybe tc co
| isDecomposableTyCon tc
, Pair ty1 ty2 <- coercionKind co
, Just (tc1, tys1) <- splitTyConApp_maybe ty1
, Just (tc2, tys2) <- splitTyConApp_maybe ty2
, tc1 == tc2
, let n = length tys1
= ASSERT( tc == tc1 )
ASSERT( n == length tys2 )
Just (decomposeCo n co)
| otherwise
= Nothing
\end{code}
Note [Eta for AppCo]
~~~~~~~~~~~~~~~~~~~~
Suppose we have
g :: s1 t1 ~ s2 t2
Then we can't necessarily make
left g :: s1 ~ s2
right g :: t1 ~ t2
because it's possible that
s1 :: * -> * t1 :: *
s2 :: (*->*) -> * t2 :: * -> *
and in that case (left g) does not have the same
kind on either side.
It's enough to check that
kind t1 = kind t2
because if g is well-kinded then
kind (s1 t2) = kind (s2 t2)
and these two imply
kind s1 = kind s2