%
% (c) The University of Glasgow 2006
% (c) The AQUA Project, Glasgow University, 1998
%
This module contains definitions for the IdInfo for things that
have a standard form, namely:
- data constructors
- record selectors
- method and superclass selectors
- primitive operations
\begin{code}
module MkId (
mkDictFunId, mkDictFunTy, mkDictSelId,
mkPrimOpId, mkFCallId,
wrapNewTypeBody, unwrapNewTypeBody,
wrapFamInstBody, unwrapFamInstScrut,
wrapTypeFamInstBody, wrapTypeUnbranchedFamInstBody, unwrapTypeFamInstScrut,
unwrapTypeUnbranchedFamInstScrut,
DataConBoxer(..), mkDataConRep, mkDataConWorkId,
wiredInIds, ghcPrimIds,
unsafeCoerceName, unsafeCoerceId, realWorldPrimId,
voidArgId, nullAddrId, seqId, lazyId, lazyIdKey,
coercionTokenId, magicSingIId,
module PrelRules
) where
#include "HsVersions.h"
import Rules
import TysPrim
import TysWiredIn
import PrelRules
import Type
import FamInstEnv
import Coercion
import TcType
import MkCore
import CoreUtils ( exprType, mkCast )
import CoreUnfold
import Literal
import TyCon
import CoAxiom
import Class
import NameSet
import VarSet
import Name
import PrimOp
import ForeignCall
import DataCon
import Id
import Var ( mkExportedLocalVar )
import IdInfo
import Demand
import CoreSyn
import Unique
import UniqSupply
import PrelNames
import BasicTypes hiding ( SuccessFlag(..) )
import Util
import Pair
import DynFlags
import Outputable
import FastString
import ListSetOps
import Data.Maybe ( maybeToList )
\end{code}
%************************************************************************
%* *
\subsection{Wired in Ids}
%* *
%************************************************************************
Note [Wired-in Ids]
~~~~~~~~~~~~~~~~~~~
There are several reasons why an Id might appear in the wiredInIds:
(1) The ghcPrimIds are wired in because they can't be defined in
Haskell at all, although the can be defined in Core. They have
compulsory unfoldings, so they are always inlined and they have
no definition site. Their home module is GHC.Prim, so they
also have a description in primops.txt.pp, where they are called
'pseudoops'.
(2) The 'error' function, eRROR_ID, is wired in because we don't yet have
a way to express in an interface file that the result type variable
is 'open'; that is can be unified with an unboxed type
[The interface file format now carry such information, but there's
no way yet of expressing at the definition site for these
error-reporting functions that they have an 'open'
result type. -- sof 1/99]
(3) Other error functions (rUNTIME_ERROR_ID) are wired in (a) because
the desugarer generates code that mentiones them directly, and
(b) for the same reason as eRROR_ID
(4) lazyId is wired in because the wired-in version overrides the
strictness of the version defined in GHC.Base
In cases (2-4), the function has a definition in a library module, and
can be called; but the wired-in version means that the details are
never read from that module's interface file; instead, the full definition
is right here.
\begin{code}
wiredInIds :: [Id]
wiredInIds
= [lazyId]
++ errorIds
++ ghcPrimIds
ghcPrimIds :: [Id]
ghcPrimIds
= [
realWorldPrimId,
unsafeCoerceId,
nullAddrId,
seqId,
magicSingIId
]
\end{code}
%************************************************************************
%* *
\subsection{Data constructors}
%* *
%************************************************************************
The wrapper for a constructor is an ordinary top-level binding that evaluates
any strict args, unboxes any args that are going to be flattened, and calls
the worker.
We're going to build a constructor that looks like:
data (Data a, C b) => T a b = T1 !a !Int b
T1 = /\ a b ->
\d1::Data a, d2::C b ->
\p q r -> case p of { p ->
case q of { q ->
Con T1 [a,b] [p,q,r]}}
Notice that
* d2 is thrown away --- a context in a data decl is used to make sure
one *could* construct dictionaries at the site the constructor
is used, but the dictionary isn't actually used.
* We have to check that we can construct Data dictionaries for
the types a and Int. Once we've done that we can throw d1 away too.
* We use (case p of q -> ...) to evaluate p, rather than "seq" because
all that matters is that the arguments are evaluated. "seq" is
very careful to preserve evaluation order, which we don't need
to be here.
You might think that we could simply give constructors some strictness
info, like PrimOps, and let CoreToStg do the let-to-case transformation.
But we don't do that because in the case of primops and functions strictness
is a *property* not a *requirement*. In the case of constructors we need to
do something active to evaluate the argument.
Making an explicit case expression allows the simplifier to eliminate
it in the (common) case where the constructor arg is already evaluated.
Note [Wrappers for data instance tycons]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In the case of data instances, the wrapper also applies the coercion turning
the representation type into the family instance type to cast the result of
the wrapper. For example, consider the declarations
data family Map k :: * -> *
data instance Map (a, b) v = MapPair (Map a (Pair b v))
The tycon to which the datacon MapPair belongs gets a unique internal
name of the form :R123Map, and we call it the representation tycon.
In contrast, Map is the family tycon (accessible via
tyConFamInst_maybe). A coercion allows you to move between
representation and family type. It is accessible from :R123Map via
tyConFamilyCoercion_maybe and has kind
Co123Map a b v :: {Map (a, b) v ~ :R123Map a b v}
The wrapper and worker of MapPair get the types
-- Wrapper
$WMapPair :: forall a b v. Map a (Map a b v) -> Map (a, b) v
$WMapPair a b v = MapPair a b v `cast` sym (Co123Map a b v)
-- Worker
MapPair :: forall a b v. Map a (Map a b v) -> :R123Map a b v
This coercion is conditionally applied by wrapFamInstBody.
It's a bit more complicated if the data instance is a GADT as well!
data instance T [a] where
T1 :: forall b. b -> T [Maybe b]
Hence we translate to
-- Wrapper
$WT1 :: forall b. b -> T [Maybe b]
$WT1 b v = T1 (Maybe b) b (Maybe b) v
`cast` sym (Co7T (Maybe b))
-- Worker
T1 :: forall c b. (c ~ Maybe b) => b -> :R7T c
-- Coercion from family type to representation type
Co7T a :: T [a] ~ :R7T a
Note [Newtype datacons]
~~~~~~~~~~~~~~~~~~~~~~~
The "data constructor" for a newtype should always be vanilla. At one
point this wasn't true, because the newtype arising from
class C a => D a
looked like
newtype T:D a = D:D (C a)
so the data constructor for T:C had a single argument, namely the
predicate (C a). But now we treat that as an ordinary argument, not
part of the theta-type, so all is well.
%************************************************************************
%* *
\subsection{Dictionary selectors}
%* *
%************************************************************************
Selecting a field for a dictionary. If there is just one field, then
there's nothing to do.
Dictionary selectors may get nested forall-types. Thus:
class Foo a where
op :: forall b. Ord b => a -> b -> b
Then the top-level type for op is
op :: forall a. Foo a =>
forall b. Ord b =>
a -> b -> b
This is unlike ordinary record selectors, which have all the for-alls
at the outside. When dealing with classes it's very convenient to
recover the original type signature from the class op selector.
\begin{code}
mkDictSelId :: DynFlags
-> Bool
-> Name
-> Class -> Id
mkDictSelId dflags no_unf name clas
= mkGlobalId (ClassOpId clas) name sel_ty info
where
sel_ty = mkForAllTys tyvars (mkFunTy (idType dict_id) (idType the_arg_id))
base_info = noCafIdInfo
`setArityInfo` 1
`setStrictnessInfo` strict_sig
`setUnfoldingInfo` (if no_unf then noUnfolding
else mkImplicitUnfolding dflags rhs)
info | new_tycon = base_info `setInlinePragInfo` alwaysInlinePragma
| otherwise = base_info `setSpecInfo` mkSpecInfo [rule]
`setInlinePragInfo` neverInlinePragma
n_ty_args = length tyvars
rule = BuiltinRule { ru_name = fsLit "Class op " `appendFS`
occNameFS (getOccName name)
, ru_fn = name
, ru_nargs = n_ty_args + 1
, ru_try = dictSelRule val_index n_ty_args }
strict_sig = mkStrictSig (mkTopDmdType [arg_dmd] topRes)
arg_dmd | new_tycon = evalDmd
| otherwise = mkManyUsedDmd $
mkProdDmd [ if the_arg_id == id then evalDmd else absDmd
| id <- arg_ids ]
tycon = classTyCon clas
new_tycon = isNewTyCon tycon
[data_con] = tyConDataCons tycon
tyvars = dataConUnivTyVars data_con
arg_tys = dataConRepArgTys data_con
val_index = assoc "MkId.mkDictSelId" sel_index_prs name
sel_index_prs = map idName (classAllSelIds clas) `zip` [0..]
the_arg_id = getNth arg_ids val_index
pred = mkClassPred clas (mkTyVarTys tyvars)
dict_id = mkTemplateLocal 1 pred
arg_ids = mkTemplateLocalsNum 2 arg_tys
rhs = mkLams tyvars (Lam dict_id rhs_body)
rhs_body | new_tycon = unwrapNewTypeBody tycon (map mkTyVarTy tyvars) (Var dict_id)
| otherwise = Case (Var dict_id) dict_id (idType the_arg_id)
[(DataAlt data_con, arg_ids, varToCoreExpr the_arg_id)]
dictSelRule :: Int -> Arity -> RuleFun
dictSelRule val_index n_ty_args _ id_unf _ args
| (dict_arg : _) <- drop n_ty_args args
, Just (_, _, con_args) <- exprIsConApp_maybe id_unf dict_arg
= Just (getNth con_args val_index)
| otherwise
= Nothing
\end{code}
%************************************************************************
%* *
Boxing and unboxing
%* *
%************************************************************************
\begin{code}
mkDataConWorkId :: Name -> DataCon -> Id
mkDataConWorkId wkr_name data_con
| isNewTyCon tycon
= mkGlobalId (DataConWrapId data_con) wkr_name nt_wrap_ty nt_work_info
| otherwise
= mkGlobalId (DataConWorkId data_con) wkr_name alg_wkr_ty wkr_info
where
tycon = dataConTyCon data_con
alg_wkr_ty = dataConRepType data_con
wkr_arity = dataConRepArity data_con
wkr_info = noCafIdInfo
`setArityInfo` wkr_arity
`setStrictnessInfo` wkr_sig
`setUnfoldingInfo` evaldUnfolding
wkr_sig = mkStrictSig (mkTopDmdType (replicate wkr_arity topDmd) (dataConCPR data_con))
(nt_tvs, _, nt_arg_tys, _) = dataConSig data_con
res_ty_args = mkTyVarTys nt_tvs
nt_wrap_ty = dataConUserType data_con
nt_work_info = noCafIdInfo
`setArityInfo` 1
`setInlinePragInfo` alwaysInlinePragma
`setUnfoldingInfo` newtype_unf
id_arg1 = mkTemplateLocal 1 (head nt_arg_tys)
newtype_unf = ASSERT2( isVanillaDataCon data_con &&
isSingleton nt_arg_tys, ppr data_con )
mkCompulsoryUnfolding $
mkLams nt_tvs $ Lam id_arg1 $
wrapNewTypeBody tycon res_ty_args (Var id_arg1)
dataConCPR :: DataCon -> DmdResult
dataConCPR con
| isDataTyCon tycon
, isVanillaDataCon con
, wkr_arity > 0
, wkr_arity <= mAX_CPR_SIZE
= if is_prod then cprProdRes
else cprSumRes (dataConTag con)
| otherwise
= topRes
where
is_prod = isProductTyCon tycon
tycon = dataConTyCon con
wkr_arity = dataConRepArity con
mAX_CPR_SIZE :: Arity
mAX_CPR_SIZE = 10
\end{code}
-------------------------------------------------
-- Data constructor representation
--
-- This is where we decide how to wrap/unwrap the
-- constructor fields
--
--------------------------------------------------
\begin{code}
type Unboxer = Var -> UniqSM ([Var], CoreExpr -> CoreExpr)
data Boxer = UnitBox | Boxer (TvSubst -> UniqSM ([Var], CoreExpr))
newtype DataConBoxer = DCB ([Type] -> [Var] -> UniqSM ([Var], [CoreBind]))
mkDataConRep :: DynFlags -> FamInstEnvs -> Name -> DataCon -> UniqSM DataConRep
mkDataConRep dflags fam_envs wrap_name data_con
| not wrapper_reqd
= return NoDataConRep
| otherwise
= do { wrap_args <- mapM newLocal wrap_arg_tys
; wrap_body <- mk_rep_app (wrap_args `zip` dropList eq_spec unboxers)
initial_wrap_app
; let wrap_id = mkGlobalId (DataConWrapId data_con) wrap_name wrap_ty wrap_info
wrap_info = noCafIdInfo
`setArityInfo` wrap_arity
`setInlinePragInfo` alwaysInlinePragma
`setUnfoldingInfo` wrap_unf
`setStrictnessInfo` wrap_sig
wrap_sig = mkStrictSig (mkTopDmdType wrap_arg_dmds (dataConCPR data_con))
wrap_arg_dmds = map mk_dmd (dropList eq_spec wrap_bangs)
mk_dmd str | isBanged str = evalDmd
| otherwise = topDmd
wrap_unf = mkInlineUnfolding (Just wrap_arity) wrap_rhs
wrap_tvs = (univ_tvs `minusList` map fst eq_spec) ++ ex_tvs
wrap_rhs = mkLams wrap_tvs $
mkLams wrap_args $
wrapFamInstBody tycon res_ty_args $
wrap_body
; return (DCR { dcr_wrap_id = wrap_id
, dcr_boxer = mk_boxer boxers
, dcr_arg_tys = rep_tys
, dcr_stricts = rep_strs
, dcr_bangs = dropList ev_tys wrap_bangs }) }
where
(univ_tvs, ex_tvs, eq_spec, theta, orig_arg_tys, _) = dataConFullSig data_con
res_ty_args = substTyVars (mkTopTvSubst eq_spec) univ_tvs
tycon = dataConTyCon data_con
wrap_ty = dataConUserType data_con
ev_tys = eqSpecPreds eq_spec ++ theta
all_arg_tys = ev_tys ++ orig_arg_tys
orig_bangs = map mk_pred_strict_mark ev_tys ++ dataConStrictMarks data_con
wrap_arg_tys = theta ++ orig_arg_tys
wrap_arity = length wrap_arg_tys
(wrap_bangs, rep_tys_w_strs, wrappers)
= unzip3 (zipWith (dataConArgRep dflags fam_envs) all_arg_tys orig_bangs)
(unboxers, boxers) = unzip wrappers
(rep_tys, rep_strs) = unzip (concat rep_tys_w_strs)
wrapper_reqd = not (isNewTyCon tycon)
&& (any isBanged orig_bangs
|| isFamInstTyCon tycon)
initial_wrap_app = Var (dataConWorkId data_con)
`mkTyApps` res_ty_args
`mkVarApps` ex_tvs
`mkCoApps` map (mkReflCo Nominal . snd) eq_spec
mk_boxer :: [Boxer] -> DataConBoxer
mk_boxer boxers = DCB (\ ty_args src_vars ->
do { let ex_vars = takeList ex_tvs src_vars
subst1 = mkTopTvSubst (univ_tvs `zip` ty_args)
subst2 = extendTvSubstList subst1 ex_tvs
(mkTyVarTys ex_vars)
; (rep_ids, binds) <- go subst2 boxers (dropList ex_tvs src_vars)
; return (ex_vars ++ rep_ids, binds) } )
go _ [] src_vars = ASSERT2( null src_vars, ppr data_con ) return ([], [])
go subst (UnitBox : boxers) (src_var : src_vars)
= do { (rep_ids2, binds) <- go subst boxers src_vars
; return (src_var : rep_ids2, binds) }
go subst (Boxer boxer : boxers) (src_var : src_vars)
= do { (rep_ids1, arg) <- boxer subst
; (rep_ids2, binds) <- go subst boxers src_vars
; return (rep_ids1 ++ rep_ids2, NonRec src_var arg : binds) }
go _ (_:_) [] = pprPanic "mk_boxer" (ppr data_con)
mk_rep_app :: [(Id,Unboxer)] -> CoreExpr -> UniqSM CoreExpr
mk_rep_app [] con_app
= return con_app
mk_rep_app ((wrap_arg, unboxer) : prs) con_app
= do { (rep_ids, unbox_fn) <- unboxer wrap_arg
; expr <- mk_rep_app prs (mkVarApps con_app rep_ids)
; return (unbox_fn expr) }
newLocal :: Type -> UniqSM Var
newLocal ty = do { uniq <- getUniqueUs
; return (mkSysLocal (fsLit "dt") uniq ty) }
dataConArgRep
:: DynFlags
-> FamInstEnvs
-> Type -> HsBang
-> ( HsBang
, [(Type, StrictnessMark)]
, (Unboxer, Boxer) )
dataConArgRep _ _ arg_ty HsNoBang
= (HsNoBang, [(arg_ty, NotMarkedStrict)], (unitUnboxer, unitBoxer))
dataConArgRep _ _ arg_ty (HsUserBang _ False)
= (HsNoBang, [(arg_ty, NotMarkedStrict)], (unitUnboxer, unitBoxer))
dataConArgRep dflags fam_envs arg_ty
(HsUserBang unpk_prag True)
| not (gopt Opt_OmitInterfacePragmas dflags)
, let mb_co = topNormaliseType fam_envs arg_ty
arg_ty' = case mb_co of { Just (_,ty) -> ty; Nothing -> arg_ty }
, isUnpackableType fam_envs arg_ty'
, (rep_tys, wrappers) <- dataConArgUnpack arg_ty'
, case unpk_prag of
Nothing -> gopt Opt_UnboxStrictFields dflags
|| (gopt Opt_UnboxSmallStrictFields dflags
&& length rep_tys <= 1)
Just unpack_me -> unpack_me
= case mb_co of
Nothing -> (HsUnpack Nothing, rep_tys, wrappers)
Just (co,rep_ty) -> (HsUnpack (Just co), rep_tys, wrapCo co rep_ty wrappers)
| otherwise
= strict_but_not_unpacked arg_ty
dataConArgRep _ _ arg_ty HsStrict
= strict_but_not_unpacked arg_ty
dataConArgRep _ _ arg_ty (HsUnpack Nothing)
| (rep_tys, wrappers) <- dataConArgUnpack arg_ty
= (HsUnpack Nothing, rep_tys, wrappers)
dataConArgRep _ _ _ (HsUnpack (Just co))
| let co_rep_ty = pSnd (coercionKind co)
, (rep_tys, wrappers) <- dataConArgUnpack co_rep_ty
= (HsUnpack (Just co), rep_tys, wrapCo co co_rep_ty wrappers)
strict_but_not_unpacked :: Type -> (HsBang, [(Type,StrictnessMark)], (Unboxer, Boxer))
strict_but_not_unpacked arg_ty
= (HsStrict, [(arg_ty, MarkedStrict)], (seqUnboxer, unitBoxer))
wrapCo :: Coercion -> Type -> (Unboxer, Boxer) -> (Unboxer, Boxer)
wrapCo co rep_ty (unbox_rep, box_rep)
= (unboxer, boxer)
where
unboxer arg_id = do { rep_id <- newLocal rep_ty
; (rep_ids, rep_fn) <- unbox_rep rep_id
; let co_bind = NonRec rep_id (Var arg_id `Cast` co)
; return (rep_ids, Let co_bind . rep_fn) }
boxer = Boxer $ \ subst ->
do { (rep_ids, rep_expr)
<- case box_rep of
UnitBox -> do { rep_id <- newLocal (TcType.substTy subst rep_ty)
; return ([rep_id], Var rep_id) }
Boxer boxer -> boxer subst
; let sco = substCo (tvCvSubst subst) co
; return (rep_ids, rep_expr `Cast` mkSymCo sco) }
seqUnboxer :: Unboxer
seqUnboxer v = return ([v], \e -> Case (Var v) v (exprType e) [(DEFAULT, [], e)])
unitUnboxer :: Unboxer
unitUnboxer v = return ([v], \e -> e)
unitBoxer :: Boxer
unitBoxer = UnitBox
dataConArgUnpack
:: Type
-> ( [(Type, StrictnessMark)]
, (Unboxer, Boxer) )
dataConArgUnpack arg_ty
| Just (tc, tc_args) <- splitTyConApp_maybe arg_ty
, Just con <- tyConSingleAlgDataCon_maybe tc
, let rep_tys = dataConInstArgTys con tc_args
= ASSERT( isVanillaDataCon con )
( rep_tys `zip` dataConRepStrictness con
,( \ arg_id ->
do { rep_ids <- mapM newLocal rep_tys
; let unbox_fn body
= Case (Var arg_id) arg_id (exprType body)
[(DataAlt con, rep_ids, body)]
; return (rep_ids, unbox_fn) }
, Boxer $ \ subst ->
do { rep_ids <- mapM (newLocal . TcType.substTy subst) rep_tys
; return (rep_ids, Var (dataConWorkId con)
`mkTyApps` (substTys subst tc_args)
`mkVarApps` rep_ids ) } ) )
| otherwise
= pprPanic "dataConArgUnpack" (ppr arg_ty)
isUnpackableType :: FamInstEnvs -> Type -> Bool
isUnpackableType fam_envs ty
| Just (tc, _) <- splitTyConApp_maybe ty
, Just con <- tyConSingleAlgDataCon_maybe tc
, isVanillaDataCon con
= ok_con_args (unitNameSet (getName tc)) con
| otherwise
= False
where
ok_arg tcs (ty, bang) = not (attempt_unpack bang) || ok_ty tcs norm_ty
where
norm_ty = case topNormaliseType fam_envs ty of
Just (_, ty) -> ty
Nothing -> ty
ok_ty tcs ty
| Just (tc, _) <- splitTyConApp_maybe ty
, let tc_name = getName tc
= not (tc_name `elemNameSet` tcs)
&& case tyConSingleAlgDataCon_maybe tc of
Just con | isVanillaDataCon con
-> ok_con_args (tcs `addOneToNameSet` getName tc) con
_ -> True
| otherwise
= True
ok_con_args tcs con
= all (ok_arg tcs) (dataConOrigArgTys con `zip` dataConStrictMarks con)
attempt_unpack (HsUnpack {}) = True
attempt_unpack (HsUserBang (Just unpk) _) = unpk
attempt_unpack _ = False
\end{code}
Note [Unpack one-wide fields]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The flag UnboxSmallStrictFields ensures that any field that can
(safely) be unboxed to a word-sized unboxed field, should be so unboxed.
For example:
data A = A Int#
newtype B = B A
data C = C !B
data D = D !C
data E = E !()
data F = F !D
data G = G !F !F
All of these should have an Int# as their representation, except
G which should have two Int#s.
However
data T = T !(S Int)
data S = S !a
Here we can represent T with an Int#.
Note [Recursive unboxing]
~~~~~~~~~~~~~~~~~~~~~~~~~
Be careful not to try to unbox this!
data T = MkT {-# UNPACK #-} !T Int
Reason: consider
data R = MkR {-# UNPACK #-} !S Int
data S = MkS {-# UNPACK #-} !Int
The representation arguments of MkR are the *representation* arguments
of S (plus Int); the rep args of MkS are Int#. This is obviously no
good for T, because then we'd get an infinite number of arguments.
But it's the *argument* type that matters. This is fine:
data S = MkS S !Int
because Int is non-recursive.
Note [Unpack equality predicates]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we have a GADT with a contructor C :: (a~[b]) => b -> T a
we definitely want that equality predicate *unboxed* so that it
takes no space at all. This is easily done: just give it
an UNPACK pragma. The rest of the unpack/repack code does the
heavy lifting. This one line makes every GADT take a word less
space for each equality predicate, so it's pretty important!
\begin{code}
mk_pred_strict_mark :: PredType -> HsBang
mk_pred_strict_mark pred
| isEqPred pred = HsUnpack Nothing
| otherwise = HsNoBang
\end{code}
%************************************************************************
%* *
Wrapping and unwrapping newtypes and type families
%* *
%************************************************************************
\begin{code}
wrapNewTypeBody :: TyCon -> [Type] -> CoreExpr -> CoreExpr
wrapNewTypeBody tycon args result_expr
= ASSERT( isNewTyCon tycon )
wrapFamInstBody tycon args $
mkCast result_expr (mkSymCo co)
where
co = mkUnbranchedAxInstCo Representational (newTyConCo tycon) args
unwrapNewTypeBody :: TyCon -> [Type] -> CoreExpr -> CoreExpr
unwrapNewTypeBody tycon args result_expr
= ASSERT( isNewTyCon tycon )
mkCast result_expr (mkUnbranchedAxInstCo Representational (newTyConCo tycon) args)
wrapFamInstBody :: TyCon -> [Type] -> CoreExpr -> CoreExpr
wrapFamInstBody tycon args body
| Just co_con <- tyConFamilyCoercion_maybe tycon
= mkCast body (mkSymCo (mkUnbranchedAxInstCo Representational co_con args))
| otherwise
= body
wrapTypeFamInstBody :: CoAxiom br -> Int -> [Type] -> CoreExpr -> CoreExpr
wrapTypeFamInstBody axiom ind args body
= mkCast body (mkSymCo (mkAxInstCo Representational axiom ind args))
wrapTypeUnbranchedFamInstBody :: CoAxiom Unbranched -> [Type] -> CoreExpr -> CoreExpr
wrapTypeUnbranchedFamInstBody axiom
= wrapTypeFamInstBody axiom 0
unwrapFamInstScrut :: TyCon -> [Type] -> CoreExpr -> CoreExpr
unwrapFamInstScrut tycon args scrut
| Just co_con <- tyConFamilyCoercion_maybe tycon
= mkCast scrut (mkUnbranchedAxInstCo Representational co_con args)
| otherwise
= scrut
unwrapTypeFamInstScrut :: CoAxiom br -> Int -> [Type] -> CoreExpr -> CoreExpr
unwrapTypeFamInstScrut axiom ind args scrut
= mkCast scrut (mkAxInstCo Representational axiom ind args)
unwrapTypeUnbranchedFamInstScrut :: CoAxiom Unbranched -> [Type] -> CoreExpr -> CoreExpr
unwrapTypeUnbranchedFamInstScrut axiom
= unwrapTypeFamInstScrut axiom 0
\end{code}
%************************************************************************
%* *
\subsection{Primitive operations}
%* *
%************************************************************************
\begin{code}
mkPrimOpId :: PrimOp -> Id
mkPrimOpId prim_op
= id
where
(tyvars,arg_tys,res_ty, arity, strict_sig) = primOpSig prim_op
ty = mkForAllTys tyvars (mkFunTys arg_tys res_ty)
name = mkWiredInName gHC_PRIM (primOpOcc prim_op)
(mkPrimOpIdUnique (primOpTag prim_op))
(AnId id) UserSyntax
id = mkGlobalId (PrimOpId prim_op) name ty info
info = noCafIdInfo
`setSpecInfo` mkSpecInfo (maybeToList $ primOpRules name prim_op)
`setArityInfo` arity
`setStrictnessInfo` strict_sig
`setInlinePragInfo` neverInlinePragma
mkFCallId :: DynFlags -> Unique -> ForeignCall -> Type -> Id
mkFCallId dflags uniq fcall ty
= ASSERT( isEmptyVarSet (tyVarsOfType ty) )
mkGlobalId (FCallId fcall) name ty info
where
occ_str = showSDoc dflags (braces (ppr fcall <+> ppr ty))
name = mkFCallName uniq occ_str
info = noCafIdInfo
`setArityInfo` arity
`setStrictnessInfo` strict_sig
(_, tau) = tcSplitForAllTys ty
(arg_tys, _) = tcSplitFunTys tau
arity = length arg_tys
strict_sig = mkStrictSig (mkTopDmdType (replicate arity evalDmd) topRes)
\end{code}
%************************************************************************
%* *
\subsection{DictFuns and default methods}
%* *
%************************************************************************
Important notes about dict funs and default methods
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Dict funs and default methods are *not* ImplicitIds. Their definition
involves user-written code, so we can't figure out their strictness etc
based on fixed info, as we can for constructors and record selectors (say).
We build them as LocalIds, but with External Names. This ensures that
they are taken to account by free-variable finding and dependency
analysis (e.g. CoreFVs.exprFreeVars).
Why shouldn't they be bound as GlobalIds? Because, in particular, if
they are globals, the specialiser floats dict uses above their defns,
which prevents good simplifications happening. Also the strictness
analyser treats a occurrence of a GlobalId as imported and assumes it
contains strictness in its IdInfo, which isn't true if the thing is
bound in the same module as the occurrence.
It's OK for dfuns to be LocalIds, because we form the instance-env to
pass on to the next module (md_insts) in CoreTidy, afer tidying
and globalising the top-level Ids.
BUT make sure they are *exported* LocalIds (mkExportedLocalId) so
that they aren't discarded by the occurrence analyser.
\begin{code}
mkDictFunId :: Name
-> [TyVar]
-> ThetaType
-> Class
-> [Type]
-> Id
mkDictFunId dfun_name tvs theta clas tys
= mkExportedLocalVar (DFunId n_silent is_nt)
dfun_name
dfun_ty
vanillaIdInfo
where
is_nt = isNewTyCon (classTyCon clas)
(n_silent, dfun_ty) = mkDictFunTy tvs theta clas tys
mkDictFunTy :: [TyVar] -> ThetaType -> Class -> [Type] -> (Int, Type)
mkDictFunTy tvs theta clas tys
= (length silent_theta, dfun_ty)
where
dfun_ty = mkSigmaTy tvs (silent_theta ++ theta) (mkClassPred clas tys)
silent_theta
| null tvs, null theta
= []
| otherwise
= filterOut discard $
substTheta (zipTopTvSubst (classTyVars clas) tys)
(classSCTheta clas)
discard pred = any (`eqPred` pred) theta
\end{code}
%************************************************************************
%* *
\subsection{Un-definable}
%* *
%************************************************************************
These Ids can't be defined in Haskell. They could be defined in
unfoldings in the wired-in GHC.Prim interface file, but we'd have to
ensure that they were definitely, definitely inlined, because there is
no curried identifier for them. That's what mkCompulsoryUnfolding
does. If we had a way to get a compulsory unfolding from an interface
file, we could do that, but we don't right now.
unsafeCoerce# isn't so much a PrimOp as a phantom identifier, that
just gets expanded into a type coercion wherever it occurs. Hence we
add it as a built-in Id with an unfolding here.
The type variables we use here are "open" type variables: this means
they can unify with both unlifted and lifted types. Hence we provide
another gun with which to shoot yourself in the foot.
\begin{code}
lazyIdName, unsafeCoerceName, nullAddrName, seqName, realWorldName, coercionTokenName, magicSingIName :: Name
unsafeCoerceName = mkWiredInIdName gHC_PRIM (fsLit "unsafeCoerce#") unsafeCoerceIdKey unsafeCoerceId
nullAddrName = mkWiredInIdName gHC_PRIM (fsLit "nullAddr#") nullAddrIdKey nullAddrId
seqName = mkWiredInIdName gHC_PRIM (fsLit "seq") seqIdKey seqId
realWorldName = mkWiredInIdName gHC_PRIM (fsLit "realWorld#") realWorldPrimIdKey realWorldPrimId
lazyIdName = mkWiredInIdName gHC_MAGIC (fsLit "lazy") lazyIdKey lazyId
coercionTokenName = mkWiredInIdName gHC_PRIM (fsLit "coercionToken#") coercionTokenIdKey coercionTokenId
magicSingIName = mkWiredInIdName gHC_PRIM (fsLit "magicSingI") magicSingIKey magicSingIId
\end{code}
\begin{code}
unsafeCoerceId :: Id
unsafeCoerceId
= pcMiscPrelId unsafeCoerceName ty info
where
info = noCafIdInfo `setInlinePragInfo` alwaysInlinePragma
`setUnfoldingInfo` mkCompulsoryUnfolding rhs
ty = mkForAllTys [openAlphaTyVar,openBetaTyVar]
(mkFunTy openAlphaTy openBetaTy)
[x] = mkTemplateLocals [openAlphaTy]
rhs = mkLams [openAlphaTyVar,openBetaTyVar,x] $
Cast (Var x) (mkUnsafeCo openAlphaTy openBetaTy)
nullAddrId :: Id
nullAddrId = pcMiscPrelId nullAddrName addrPrimTy info
where
info = noCafIdInfo `setInlinePragInfo` alwaysInlinePragma
`setUnfoldingInfo` mkCompulsoryUnfolding (Lit nullAddrLit)
seqId :: Id
seqId = pcMiscPrelId seqName ty info
where
info = noCafIdInfo `setInlinePragInfo` alwaysInlinePragma
`setUnfoldingInfo` mkCompulsoryUnfolding rhs
`setSpecInfo` mkSpecInfo [seq_cast_rule]
ty = mkForAllTys [alphaTyVar,betaTyVar]
(mkFunTy alphaTy (mkFunTy betaTy betaTy))
[x,y] = mkTemplateLocals [alphaTy, betaTy]
rhs = mkLams [alphaTyVar,betaTyVar,x,y] (Case (Var x) x betaTy [(DEFAULT, [], Var y)])
seq_cast_rule = BuiltinRule { ru_name = fsLit "seq of cast"
, ru_fn = seqName
, ru_nargs = 4
, ru_try = match_seq_of_cast
}
match_seq_of_cast :: RuleFun
match_seq_of_cast _ _ _ [Type _, Type res_ty, Cast scrut co, expr]
= Just (Var seqId `mkApps` [Type (pFst (coercionKind co)), Type res_ty,
scrut, expr])
match_seq_of_cast _ _ _ _ = Nothing
lazyId :: Id
lazyId = pcMiscPrelId lazyIdName ty info
where
info = noCafIdInfo
ty = mkForAllTys [alphaTyVar] (mkFunTy alphaTy alphaTy)
magicSingIId :: Id
magicSingIId = pcMiscPrelId magicSingIName ty info
where
info = noCafIdInfo `setInlinePragInfo` neverInlinePragma
ty = mkForAllTys [alphaTyVar] alphaTy
\end{code}
Note [Unsafe coerce magic]
~~~~~~~~~~~~~~~~~~~~~~~~~~
We define a *primitive*
GHC.Prim.unsafeCoerce#
and then in the base library we define the ordinary function
Unsafe.Coerce.unsafeCoerce :: forall (a:*) (b:*). a -> b
unsafeCoerce x = unsafeCoerce# x
Notice that unsafeCoerce has a civilized (albeit still dangerous)
polymorphic type, whose type args have kind *. So you can't use it on
unboxed values (unsafeCoerce 3#).
In contrast unsafeCoerce# is even more dangerous because you *can* use
it on unboxed things, (unsafeCoerce# 3#) :: Int. Its type is
forall (a:OpenKind) (b:OpenKind). a -> b
Note [seqId magic]
~~~~~~~~~~~~~~~~~~
'GHC.Prim.seq' is special in several ways.
a) Its second arg can have an unboxed type
x `seq` (v +# w)
Hence its second type variable has ArgKind
b) Its fixity is set in LoadIface.ghcPrimIface
c) It has quite a bit of desugaring magic.
See DsUtils.lhs Note [Desugaring seq (1)] and (2) and (3)
d) There is some special rule handing: Note [User-defined RULES for seq]
e) See Note [Typing rule for seq] in TcExpr.
Note [User-defined RULES for seq]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roman found situations where he had
case (f n) of _ -> e
where he knew that f (which was strict in n) would terminate if n did.
Notice that the result of (f n) is discarded. So it makes sense to
transform to
case n of _ -> e
Rather than attempt some general analysis to support this, I've added
enough support that you can do this using a rewrite rule:
RULE "f/seq" forall n. seq (f n) e = seq n e
You write that rule. When GHC sees a case expression that discards
its result, it mentally transforms it to a call to 'seq' and looks for
a RULE. (This is done in Simplify.rebuildCase.) As usual, the
correctness of the rule is up to you.
To make this work, we need to be careful that the magical desugaring
done in Note [seqId magic] item (c) is *not* done on the LHS of a rule.
Or rather, we arrange to un-do it, in DsBinds.decomposeRuleLhs.
Note [Built-in RULES for seq]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We also have the following built-in rule for seq
seq (x `cast` co) y = seq x y
This eliminates unnecessary casts and also allows other seq rules to
match more often. Notably,
seq (f x `cast` co) y --> seq (f x) y
and now a user-defined rule for seq (see Note [User-defined RULES for seq])
may fire.
Note [lazyId magic]
~~~~~~~~~~~~~~~~~~~
lazy :: forall a?. a? -> a? (i.e. works for unboxed types too)
Used to lazify pseq: pseq a b = a `seq` lazy b
Also, no strictness: by being a built-in Id, all the info about lazyId comes from here,
not from GHC.Base.hi. This is important, because the strictness
analyser will spot it as strict!
Also no unfolding in lazyId: it gets "inlined" by a HACK in CorePrep.
It's very important to do this inlining *after* unfoldings are exposed
in the interface file. Otherwise, the unfolding for (say) pseq in the
interface file will not mention 'lazy', so if we inline 'pseq' we'll totally
miss the very thing that 'lazy' was there for in the first place.
See Trac #3259 for a real world example.
lazyId is defined in GHC.Base, so we don't *have* to inline it. If it
appears un-applied, we'll end up just calling it.
Note [magicSingIId magic]
~~~~~~~~~~~~~~~~~~~~~~~~~
The identifier `magicSIngI` is just a place-holder, which is used to
implement a primitve that we cannot define in Haskell but we can write
in Core. It is declared with a place-holder type:
magicSingI :: forall a. a
The intention is that the identifier will be used in a very specific way,
namely we add the following to the library:
withSingI :: Sing n -> (SingI n => a) -> a
withSingI x = magicSingI x ((\f -> f) :: () -> ())
The actual primitive is `withSingI`, and it uses its first argument
(of type `Sing n`) as the evidece/dictionary in the second argument.
This is done by adding a built-in rule to `prelude/PrelRules.hs`
(see `match_magicSingI`), which works as follows:
magicSingI @ (Sing n -> (() -> ()) -> (SingI n -> a) -> a)
x
(\f -> _)
---->
\(f :: (SingI n -> a) -> a) -> f (cast x (newtypeCo n))
The `newtypeCo` coercion is extracted from the `SingI` type constructor,
which is available in the instantiation. We are casting `Sing n` into `SingI n`,
which is OK because `SingI` is a class with a single methid,
and thus it is implemented as newtype.
The `(\f -> f)` parameter is there just so that we can avoid
having to make up a new name for the lambda, it is completely
changed by the rewrite.
-------------------------------------------------------------
@realWorld#@ used to be a magic literal, \tr{void#}. If things get
nasty as-is, change it back to a literal (@Literal@).
voidArgId is a Local Id used simply as an argument in functions
where we just want an arg to avoid having a thunk of unlifted type.
E.g.
x = \ void :: State# RealWorld -> (# p, q #)
This comes up in strictness analysis
\begin{code}
realWorldPrimId :: Id
realWorldPrimId
= pcMiscPrelId realWorldName realWorldStatePrimTy
(noCafIdInfo `setUnfoldingInfo` evaldUnfolding)
voidArgId :: Id
voidArgId
= mkSysLocal (fsLit "void") voidArgIdKey realWorldStatePrimTy
coercionTokenId :: Id
coercionTokenId
= pcMiscPrelId coercionTokenName
(mkTyConApp eqPrimTyCon [liftedTypeKind, unitTy, unitTy])
noCafIdInfo
\end{code}
\begin{code}
pcMiscPrelId :: Name -> Type -> IdInfo -> Id
pcMiscPrelId name ty info
= mkVanillaGlobalWithInfo name ty info
\end{code}