x
In general,
if deeplySkolemise ty = (wrap, tvs, evs, rho)
and e :: rho
then wrap e :: ty
and 'wrap' binds tvs, evs
ToDo: this eta-abstraction plays fast and loose with termination,
because it can introduce extra lambdas. Maybe add a `seq` to
fix this
\begin{code}
deeplySkolemise
:: TcSigmaType
-> TcM (HsWrapper, [TyVar], [EvVar], TcRhoType)
deeplySkolemise ty
| Just (arg_tys, tvs, theta, ty') <- tcDeepSplitSigmaTy_maybe ty
= do { ids1 <- newSysLocalIds (fsLit "dk") arg_tys
; (subst, tvs1) <- tcInstSkolTyVars tvs
; ev_vars1 <- newEvVars (substTheta subst theta)
; (wrap, tvs2, ev_vars2, rho) <- deeplySkolemise (substTy subst ty')
; return ( mkWpLams ids1
<.> mkWpTyLams tvs1
<.> mkWpLams ev_vars1
<.> wrap
<.> mkWpEvVarApps ids1
, tvs1 ++ tvs2
, ev_vars1 ++ ev_vars2
, mkFunTys arg_tys rho ) }
| otherwise
= return (idHsWrapper, [], [], ty)
deeplyInstantiate :: CtOrigin -> TcSigmaType -> TcM (HsWrapper, TcRhoType)
deeplyInstantiate orig ty
| Just (arg_tys, tvs, theta, rho) <- tcDeepSplitSigmaTy_maybe ty
= do { (_, tys, subst) <- tcInstTyVars tvs
; ids1 <- newSysLocalIds (fsLit "di") (substTys subst arg_tys)
; wrap1 <- instCall orig tys (substTheta subst theta)
; (wrap2, rho2) <- deeplyInstantiate orig (substTy subst rho)
; return (mkWpLams ids1
<.> wrap2
<.> wrap1
<.> mkWpEvVarApps ids1,
mkFunTys arg_tys rho2) }
| otherwise = return (idHsWrapper, ty)
\end{code}
%************************************************************************
%* *
Instantiating a call
%* *
%************************************************************************
\begin{code}
instCall :: CtOrigin -> [TcType] -> TcThetaType -> TcM HsWrapper
instCall orig tys theta
= do { dict_app <- instCallConstraints orig theta
; return (dict_app <.> mkWpTyApps tys) }
instCallConstraints :: CtOrigin -> TcThetaType -> TcM HsWrapper
instCallConstraints orig preds
| null preds
= return idHsWrapper
| otherwise
= do { evs <- mapM go preds
; traceTc "instCallConstraints" (ppr evs)
; return (mkWpEvApps evs) }
where
go pred
| Just (ty1, ty2) <- getEqPredTys_maybe pred
= do { co <- unifyType ty1 ty2
; return (EvCoercion co) }
| otherwise
= do { ev_var <- emitWanted orig pred
; return (EvId ev_var) }
instStupidTheta :: CtOrigin -> TcThetaType -> TcM ()
instStupidTheta orig theta
= do { _co <- instCallConstraints orig theta
; return () }
\end{code}
%************************************************************************
%* *
Literals
%* *
%************************************************************************
In newOverloadedLit we convert directly to an Int or Integer if we
know that's what we want. This may save some time, by not
temporarily generating overloaded literals, but it won't catch all
cases (the rest are caught in lookupInst).
\begin{code}
newOverloadedLit :: CtOrigin
-> HsOverLit Name
-> TcRhoType
-> TcM (HsOverLit TcId)
newOverloadedLit orig lit res_ty
= do dflags <- getDynFlags
newOverloadedLit' dflags orig lit res_ty
newOverloadedLit' :: DynFlags
-> CtOrigin
-> HsOverLit Name
-> TcRhoType
-> TcM (HsOverLit TcId)
newOverloadedLit' dflags orig
lit@(OverLit { ol_val = val, ol_rebindable = rebindable
, ol_witness = meth_name }) res_ty
| not rebindable
, Just expr <- shortCutLit dflags val res_ty
= return (lit { ol_witness = expr, ol_type = res_ty })
| otherwise
= do { hs_lit <- mkOverLit val
; let lit_ty = hsLitType hs_lit
; fi' <- tcSyntaxOp orig meth_name (mkFunTy lit_ty res_ty)
; let witness = HsApp (noLoc fi') (noLoc (HsLit hs_lit))
; return (lit { ol_witness = witness, ol_type = res_ty }) }
mkOverLit :: OverLitVal -> TcM HsLit
mkOverLit (HsIntegral i)
= do { integer_ty <- tcMetaTy integerTyConName
; return (HsInteger i integer_ty) }
mkOverLit (HsFractional r)
= do { rat_ty <- tcMetaTy rationalTyConName
; return (HsRat r rat_ty) }
mkOverLit (HsIsString s) = return (HsString s)
\end{code}
%************************************************************************
%* *
Re-mappable syntax
Used only for arrow syntax -- find a way to nuke this
%* *
%************************************************************************
Suppose we are doing the -XRebindableSyntax thing, and we encounter
a do-expression. We have to find (>>) in the current environment, which is
done by the rename. Then we have to check that it has the same type as
Control.Monad.(>>). Or, more precisely, a compatible type. One 'customer' had
this:
(>>) :: HB m n mn => m a -> n b -> mn b
So the idea is to generate a local binding for (>>), thus:
let then72 :: forall a b. m a -> m b -> m b
then72 = ...something involving the user's (>>)...
in
...the do-expression...
Now the do-expression can proceed using then72, which has exactly
the expected type.
In fact tcSyntaxName just generates the RHS for then72, because we only
want an actual binding in the do-expression case. For literals, we can
just use the expression inline.
\begin{code}
tcSyntaxName :: CtOrigin
-> TcType
-> (Name, HsExpr Name)
-> TcM (Name, HsExpr TcId)
tcSyntaxName orig ty (std_nm, HsVar user_nm)
| std_nm == user_nm
= do rhs <- newMethodFromName orig std_nm ty
return (std_nm, rhs)
tcSyntaxName orig ty (std_nm, user_nm_expr) = do
std_id <- tcLookupId std_nm
let
([tv], _, tau) = tcSplitSigmaTy (idType std_id)
sigma1 = substTyWith [tv] [ty] tau
addErrCtxtM (syntaxNameCtxt user_nm_expr orig sigma1) $ do
span <- getSrcSpanM
expr <- tcPolyExpr (L span user_nm_expr) sigma1
return (std_nm, unLoc expr)
syntaxNameCtxt :: HsExpr Name -> CtOrigin -> Type -> TidyEnv
-> TcRn (TidyEnv, SDoc)
syntaxNameCtxt name orig ty tidy_env
= do { inst_loc <- getCtLoc orig
; let msg = vcat [ ptext (sLit "When checking that") <+> quotes (ppr name)
<+> ptext (sLit "(needed by a syntactic construct)")
, nest 2 (ptext (sLit "has the required type:")
<+> ppr (tidyType tidy_env ty))
, nest 2 (pprArisingAt inst_loc) ]
; return (tidy_env, msg) }
\end{code}
%************************************************************************
%* *
Instances
%* *
%************************************************************************
\begin{code}
getOverlapFlag :: TcM OverlapFlag
getOverlapFlag
= do { dflags <- getDynFlags
; let overlap_ok = xopt Opt_OverlappingInstances dflags
incoherent_ok = xopt Opt_IncoherentInstances dflags
safeOverlap = safeLanguageOn dflags
overlap_flag | incoherent_ok = Incoherent safeOverlap
| overlap_ok = OverlapOk safeOverlap
| otherwise = NoOverlap safeOverlap
; return overlap_flag }
tcGetInstEnvs :: TcM (InstEnv, InstEnv)
tcGetInstEnvs = do { eps <- getEps; env <- getGblEnv;
return (eps_inst_env eps, tcg_inst_env env) }
tcExtendLocalInstEnv :: [ClsInst] -> TcM a -> TcM a
tcExtendLocalInstEnv dfuns thing_inside
= do { traceDFuns dfuns
; env <- getGblEnv
; inst_env' <- foldlM addLocalInst (tcg_inst_env env) dfuns
; let env' = env { tcg_insts = dfuns ++ tcg_insts env,
tcg_inst_env = inst_env' }
; setGblEnv env' thing_inside }
addLocalInst :: InstEnv -> ClsInst -> TcM InstEnv
addLocalInst home_ie ispec
= do {
eps <- getEps
; let inst_envs = (eps_inst_env eps, home_ie)
(tvs, cls, tys) = instanceHead ispec
; case checkFunDeps inst_envs ispec of
Just specs -> funDepErr ispec specs
Nothing -> return ()
; let (matches, unifs, _) = lookupInstEnv inst_envs cls tys
dup_ispecs = [ dup_ispec
| (dup_ispec, _) <- matches
, let dup_tys = is_tys dup_ispec
, isJust (tcMatchTys (mkVarSet tvs) tys dup_tys)]
; isGHCi <- getIsGHCi
; overlapFlag <- getOverlapFlag
; case isGHCi of
False -> case dup_ispecs of
dup : _ -> dupInstErr ispec dup >> return (extendInstEnv home_ie ispec)
[] -> return (extendInstEnv home_ie ispec)
True -> case (dup_ispecs, home_ie_matches, unifs, overlapFlag) of
(_, _:_, _, _) -> return (overwriteInstEnv home_ie ispec)
(dup:_, [], _, _) -> dupInstErr ispec dup >> return (extendInstEnv home_ie ispec)
([], _, u:_, NoOverlap _) -> overlappingInstErr ispec u >> return (extendInstEnv home_ie ispec)
_ -> return (extendInstEnv home_ie ispec)
where (homematches, _) = lookupInstEnv' home_ie cls tys
home_ie_matches = [ dup_ispec
| (dup_ispec, _) <- homematches
, let dup_tys = is_tys dup_ispec
, isJust (tcMatchTys (mkVarSet tvs) tys dup_tys)] }
traceDFuns :: [ClsInst] -> TcRn ()
traceDFuns ispecs
= traceTc "Adding instances:" (vcat (map pp ispecs))
where
pp ispec = ppr (instanceDFunId ispec) <+> colon <+> ppr ispec
funDepErr :: ClsInst -> [ClsInst] -> TcRn ()
funDepErr ispec ispecs
= addClsInstsErr (ptext (sLit "Functional dependencies conflict between instance declarations:"))
(ispec : ispecs)
dupInstErr :: ClsInst -> ClsInst -> TcRn ()
dupInstErr ispec dup_ispec
= addClsInstsErr (ptext (sLit "Duplicate instance declarations:"))
[ispec, dup_ispec]
overlappingInstErr :: ClsInst -> ClsInst -> TcRn ()
overlappingInstErr ispec dup_ispec
= addClsInstsErr (ptext (sLit "Overlapping instance declarations:"))
[ispec, dup_ispec]
addClsInstsErr :: SDoc -> [ClsInst] -> TcRn ()
addClsInstsErr herald ispecs
= setSrcSpan (getSrcSpan (head sorted)) $
addErr (hang herald 2 (pprInstances sorted))
where
sorted = sortWith getSrcLoc ispecs
\end{code}
%************************************************************************
%* *
Simple functions over evidence variables
%* *
%************************************************************************
\begin{code}
hasEqualities :: [EvVar] -> Bool
hasEqualities givens = any (has_eq . evVarPred) givens
where
has_eq = has_eq' . classifyPredType
has_eq' (EqPred {}) = True
has_eq' (ClassPred cls _tys) = any has_eq (classSCTheta cls)
has_eq' (TuplePred ts) = any has_eq ts
has_eq' (IrredPred _) = True
tyVarsOfCt :: Ct -> TcTyVarSet
tyVarsOfCt (CTyEqCan { cc_tyvar = tv, cc_rhs = xi }) = extendVarSet (tyVarsOfType xi) tv
tyVarsOfCt (CFunEqCan { cc_tyargs = tys, cc_rhs = xi }) = tyVarsOfTypes (xi:tys)
tyVarsOfCt (CDictCan { cc_tyargs = tys }) = tyVarsOfTypes tys
tyVarsOfCt (CIrredEvCan { cc_ev = ev }) = tyVarsOfType (ctEvPred ev)
tyVarsOfCt (CHoleCan { cc_ev = ev }) = tyVarsOfType (ctEvPred ev)
tyVarsOfCt (CNonCanonical { cc_ev = ev }) = tyVarsOfType (ctEvPred ev)
tyVarsOfCts :: Cts -> TcTyVarSet
tyVarsOfCts = foldrBag (unionVarSet . tyVarsOfCt) emptyVarSet
tyVarsOfWC :: WantedConstraints -> TyVarSet
tyVarsOfWC (WC { wc_flat = flat, wc_impl = implic, wc_insol = insol })
= tyVarsOfCts flat `unionVarSet`
tyVarsOfBag tyVarsOfImplic implic `unionVarSet`
tyVarsOfCts insol
tyVarsOfImplic :: Implication -> TyVarSet
tyVarsOfImplic (Implic { ic_skols = skols, ic_fsks = fsks
, ic_given = givens, ic_wanted = wanted })
= (tyVarsOfWC wanted `unionVarSet` tyVarsOfTypes (map evVarPred givens))
`delVarSetList` skols `delVarSetList` fsks
tyVarsOfBag :: (a -> TyVarSet) -> Bag a -> TyVarSet
tyVarsOfBag tvs_of = foldrBag (unionVarSet . tvs_of) emptyVarSet
tidyCt :: TidyEnv -> Ct -> Ct
tidyCt env ct
= case ct of
CHoleCan { cc_ev = ev }
-> ct { cc_ev = tidy_ev env ev }
_ -> CNonCanonical { cc_ev = tidy_ev env (cc_ev ct)
, cc_loc = cc_loc ct }
where
tidy_ev :: TidyEnv -> CtEvidence -> CtEvidence
tidy_ev env ctev@(CtGiven { ctev_pred = pred })
= ctev { ctev_pred = tidyType env pred }
tidy_ev env ctev@(CtWanted { ctev_pred = pred })
= ctev { ctev_pred = tidyType env pred }
tidy_ev env ctev@(CtDerived { ctev_pred = pred })
= ctev { ctev_pred = tidyType env pred }
tidyEvVar :: TidyEnv -> EvVar -> EvVar
tidyEvVar env var = setVarType var (tidyType env (varType var))
tidySkolemInfo :: TidyEnv -> SkolemInfo -> (TidyEnv, SkolemInfo)
tidySkolemInfo env (SigSkol cx ty)
= (env', SigSkol cx ty')
where
(env', ty') = tidyOpenType env ty
tidySkolemInfo env (InferSkol ids)
= (env', InferSkol ids')
where
(env', ids') = mapAccumL do_one env ids
do_one env (name, ty) = (env', (name, ty'))
where
(env', ty') = tidyOpenType env ty
tidySkolemInfo env (UnifyForAllSkol skol_tvs ty)
= (env1, UnifyForAllSkol skol_tvs' ty')
where
env1 = tidyFreeTyVars env (tyVarsOfType ty `delVarSetList` skol_tvs)
(env2, skol_tvs') = tidyTyVarBndrs env1 skol_tvs
ty' = tidyType env2 ty
tidySkolemInfo env info = (env, info)
\end{code}