% % (c) The University of Glasgow 2006 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % The @Inst@ type: dictionaries or method instances \begin{code}
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details

module Inst ( 
       deeplySkolemise, 
       deeplyInstantiate, instCall, instStupidTheta,
       emitWanted, emitWanteds,

       newOverloadedLit, mkOverLit, 
     
       tcGetInstEnvs, getOverlapFlag,
       tcExtendLocalInstEnv, instCallConstraints, newMethodFromName,
       tcSyntaxName,

       -- Simple functions over evidence variables
       hasEqualities, 
       
       tyVarsOfWC, tyVarsOfBag, 
       tyVarsOfCt, tyVarsOfCts, 

       tidyEvVar, tidyCt, tidySkolemInfo
    ) where

#include "HsVersions.h"

import {-# SOURCE #-}	TcExpr( tcPolyExpr, tcSyntaxOp )
import {-# SOURCE #-}	TcUnify( unifyType )

import FastString
import HsSyn
import TcHsSyn
import TcRnMonad
import TcEnv
import TcEvidence
import InstEnv
import FunDeps
import TcMType
import Type
import TcType
import Class
import Unify
import HscTypes
import Id
import Name
import Var      ( EvVar, varType, setVarType )
import VarEnv
import VarSet
import PrelNames
import SrcLoc
import DynFlags
import Bag
import Maybes
import Util
import Outputable
import Data.List( mapAccumL )
\end{code} %************************************************************************ %* * Emitting constraints %* * %************************************************************************ \begin{code}
emitWanteds :: CtOrigin -> TcThetaType -> TcM [EvVar]
emitWanteds origin theta = mapM (emitWanted origin) theta

emitWanted :: CtOrigin -> TcPredType -> TcM EvVar
emitWanted origin pred 
  = do { loc <- getCtLoc origin
       ; ev  <- newWantedEvVar pred
       ; emitFlat (mkNonCanonical loc (CtWanted { ctev_pred = pred, ctev_evar = ev }))
       ; return ev }

newMethodFromName :: CtOrigin -> Name -> TcRhoType -> TcM (HsExpr TcId)
-- Used when Name is the wired-in name for a wired-in class method,
-- so the caller knows its type for sure, which should be of form
--    forall a. C a => <blah>
-- newMethodFromName is supposed to instantiate just the outer 
-- type variable and constraint

newMethodFromName origin name inst_ty
  = do { id <- tcLookupId name
 	      -- Use tcLookupId not tcLookupGlobalId; the method is almost
	      -- always a class op, but with -XRebindableSyntax GHC is
	      -- meant to find whatever thing is in scope, and that may
	      -- be an ordinary function. 

       ; let (tvs, theta, _caller_knows_this) = tcSplitSigmaTy (idType id)
             (the_tv:rest) = tvs
             subst = zipOpenTvSubst [the_tv] [inst_ty]

       ; wrap <- ASSERT( null rest && isSingleton theta )
                 instCall origin [inst_ty] (substTheta subst theta)
       ; return (mkHsWrap wrap (HsVar id)) }
\end{code} %************************************************************************ %* * Deep instantiation and skolemisation %* * %************************************************************************ Note [Deep skolemisation] ~~~~~~~~~~~~~~~~~~~~~~~~~ deeplySkolemise decomposes and skolemises a type, returning a type with all its arrows visible (ie not buried under foralls) Examples: deeplySkolemise (Int -> forall a. Ord a => blah) = ( wp, [a], [d:Ord a], Int -> blah ) where wp = \x:Int. /\a. \(d:Ord a). x deeplySkolemise (forall a. Ord a => Maybe a -> forall b. Eq b => blah) = ( wp, [a,b], [d1:Ord a,d2:Eq b], Maybe a -> blah ) where wp = /\a.\(d1:Ord a).\(x:Maybe a)./\b.\(d2:Ord b). x In general, if deeplySkolemise ty = (wrap, tvs, evs, rho) and e :: rho then wrap e :: ty and 'wrap' binds tvs, evs ToDo: this eta-abstraction plays fast and loose with termination, because it can introduce extra lambdas. Maybe add a `seq` to fix this \begin{code}
deeplySkolemise
  :: TcSigmaType
  -> TcM (HsWrapper, [TyVar], [EvVar], TcRhoType)

deeplySkolemise ty
  | Just (arg_tys, tvs, theta, ty') <- tcDeepSplitSigmaTy_maybe ty
  = do { ids1 <- newSysLocalIds (fsLit "dk") arg_tys
       ; (subst, tvs1) <- tcInstSkolTyVars tvs
       ; ev_vars1 <- newEvVars (substTheta subst theta)
       ; (wrap, tvs2, ev_vars2, rho) <- deeplySkolemise (substTy subst ty')
       ; return ( mkWpLams ids1
                   <.> mkWpTyLams tvs1
                   <.> mkWpLams ev_vars1
                   <.> wrap
                   <.> mkWpEvVarApps ids1
                , tvs1     ++ tvs2
                , ev_vars1 ++ ev_vars2
                , mkFunTys arg_tys rho ) }

  | otherwise
  = return (idHsWrapper, [], [], ty)

deeplyInstantiate :: CtOrigin -> TcSigmaType -> TcM (HsWrapper, TcRhoType)
--   Int -> forall a. a -> a  ==>  (\x:Int. [] x alpha) :: Int -> alpha
-- In general if
-- if    deeplyInstantiate ty = (wrap, rho)
-- and   e :: ty
-- then  wrap e :: rho

deeplyInstantiate orig ty
  | Just (arg_tys, tvs, theta, rho) <- tcDeepSplitSigmaTy_maybe ty
  = do { (_, tys, subst) <- tcInstTyVars tvs
       ; ids1  <- newSysLocalIds (fsLit "di") (substTys subst arg_tys)
       ; wrap1 <- instCall orig tys (substTheta subst theta)
       ; (wrap2, rho2) <- deeplyInstantiate orig (substTy subst rho)
       ; return (mkWpLams ids1 
                    <.> wrap2
                    <.> wrap1 
                    <.> mkWpEvVarApps ids1,
                 mkFunTys arg_tys rho2) }

  | otherwise = return (idHsWrapper, ty)
\end{code} %************************************************************************ %* * Instantiating a call %* * %************************************************************************ \begin{code}
----------------
instCall :: CtOrigin -> [TcType] -> TcThetaType -> TcM HsWrapper
-- Instantiate the constraints of a call
--	(instCall o tys theta)
-- (a) Makes fresh dictionaries as necessary for the constraints (theta)
-- (b) Throws these dictionaries into the LIE
-- (c) Returns an HsWrapper ([.] tys dicts)

instCall orig tys theta 
  = do	{ dict_app <- instCallConstraints orig theta
	; return (dict_app <.> mkWpTyApps tys) }

----------------
instCallConstraints :: CtOrigin -> TcThetaType -> TcM HsWrapper
-- Instantiates the TcTheta, puts all constraints thereby generated
-- into the LIE, and returns a HsWrapper to enclose the call site.

instCallConstraints orig preds
  | null preds 
  = return idHsWrapper
  | otherwise
  = do { evs <- mapM go preds
       ; traceTc "instCallConstraints" (ppr evs)
       ; return (mkWpEvApps evs) }
  where
    go pred 
     | Just (ty1, ty2) <- getEqPredTys_maybe pred -- Try short-cut
     = do  { co <- unifyType ty1 ty2
           ; return (EvCoercion co) }
     | otherwise
     = do { ev_var <- emitWanted orig pred
     	  ; return (EvId ev_var) }

----------------
instStupidTheta :: CtOrigin -> TcThetaType -> TcM ()
-- Similar to instCall, but only emit the constraints in the LIE
-- Used exclusively for the 'stupid theta' of a data constructor
instStupidTheta orig theta
  = do	{ _co <- instCallConstraints orig theta -- Discard the coercion
	; return () }
\end{code} %************************************************************************ %* * Literals %* * %************************************************************************ In newOverloadedLit we convert directly to an Int or Integer if we know that's what we want. This may save some time, by not temporarily generating overloaded literals, but it won't catch all cases (the rest are caught in lookupInst). \begin{code}
newOverloadedLit :: CtOrigin
                 -> HsOverLit Name
                 -> TcRhoType
                 -> TcM (HsOverLit TcId)
newOverloadedLit orig lit res_ty
    = do dflags <- getDynFlags
         newOverloadedLit' dflags orig lit res_ty

newOverloadedLit' :: DynFlags
                  -> CtOrigin
                  -> HsOverLit Name
                  -> TcRhoType
                  -> TcM (HsOverLit TcId)
newOverloadedLit' dflags orig
  lit@(OverLit { ol_val = val, ol_rebindable = rebindable
	       , ol_witness = meth_name }) res_ty

  | not rebindable
  , Just expr <- shortCutLit dflags val res_ty 
	-- Do not generate a LitInst for rebindable syntax.  
	-- Reason: If we do, tcSimplify will call lookupInst, which
	--	   will call tcSyntaxName, which does unification, 
	--	   which tcSimplify doesn't like
  = return (lit { ol_witness = expr, ol_type = res_ty })

  | otherwise
  = do	{ hs_lit <- mkOverLit val
	; let lit_ty = hsLitType hs_lit
	; fi' <- tcSyntaxOp orig meth_name (mkFunTy lit_ty res_ty)
	 	-- Overloaded literals must have liftedTypeKind, because
	 	-- we're instantiating an overloaded function here,
	 	-- whereas res_ty might be openTypeKind. This was a bug in 6.2.2
		-- However this'll be picked up by tcSyntaxOp if necessary
	; let witness = HsApp (noLoc fi') (noLoc (HsLit hs_lit))
	; return (lit { ol_witness = witness, ol_type = res_ty }) }

------------
mkOverLit :: OverLitVal -> TcM HsLit
mkOverLit (HsIntegral i) 
  = do	{ integer_ty <- tcMetaTy integerTyConName
	; return (HsInteger i integer_ty) }

mkOverLit (HsFractional r)
  = do	{ rat_ty <- tcMetaTy rationalTyConName
	; return (HsRat r rat_ty) }

mkOverLit (HsIsString s) = return (HsString s)
\end{code} %************************************************************************ %* * Re-mappable syntax Used only for arrow syntax -- find a way to nuke this %* * %************************************************************************ Suppose we are doing the -XRebindableSyntax thing, and we encounter a do-expression. We have to find (>>) in the current environment, which is done by the rename. Then we have to check that it has the same type as Control.Monad.(>>). Or, more precisely, a compatible type. One 'customer' had this: (>>) :: HB m n mn => m a -> n b -> mn b So the idea is to generate a local binding for (>>), thus: let then72 :: forall a b. m a -> m b -> m b then72 = ...something involving the user's (>>)... in ...the do-expression... Now the do-expression can proceed using then72, which has exactly the expected type. In fact tcSyntaxName just generates the RHS for then72, because we only want an actual binding in the do-expression case. For literals, we can just use the expression inline. \begin{code}
tcSyntaxName :: CtOrigin
	     -> TcType			-- Type to instantiate it at
	     -> (Name, HsExpr Name)	-- (Standard name, user name)
	     -> TcM (Name, HsExpr TcId)	-- (Standard name, suitable expression)
-- USED ONLY FOR CmdTop (sigh) ***
-- See Note [CmdSyntaxTable] in HsExpr

tcSyntaxName orig ty (std_nm, HsVar user_nm)
  | std_nm == user_nm
  = do rhs <- newMethodFromName orig std_nm ty
       return (std_nm, rhs)

tcSyntaxName orig ty (std_nm, user_nm_expr) = do
    std_id <- tcLookupId std_nm
    let	
	-- C.f. newMethodAtLoc
	([tv], _, tau)  = tcSplitSigmaTy (idType std_id)
 	sigma1		= substTyWith [tv] [ty] tau
	-- Actually, the "tau-type" might be a sigma-type in the
	-- case of locally-polymorphic methods.

    addErrCtxtM (syntaxNameCtxt user_nm_expr orig sigma1) $ do

	-- Check that the user-supplied thing has the
	-- same type as the standard one.  
	-- Tiresome jiggling because tcCheckSigma takes a located expression
     span <- getSrcSpanM
     expr <- tcPolyExpr (L span user_nm_expr) sigma1
     return (std_nm, unLoc expr)

syntaxNameCtxt :: HsExpr Name -> CtOrigin -> Type -> TidyEnv
               -> TcRn (TidyEnv, SDoc)
syntaxNameCtxt name orig ty tidy_env
  = do { inst_loc <- getCtLoc orig
       ; let msg = vcat [ ptext (sLit "When checking that") <+> quotes (ppr name)
			  <+> ptext (sLit "(needed by a syntactic construct)")
		        , nest 2 (ptext (sLit "has the required type:")
                                  <+> ppr (tidyType tidy_env ty))
		        , nest 2 (pprArisingAt inst_loc) ]
       ; return (tidy_env, msg) }
\end{code} %************************************************************************ %* * Instances %* * %************************************************************************ \begin{code}
getOverlapFlag :: TcM OverlapFlag
getOverlapFlag 
  = do  { dflags <- getDynFlags
        ; let overlap_ok    = xopt Opt_OverlappingInstances dflags
              incoherent_ok = xopt Opt_IncoherentInstances  dflags
              safeOverlap   = safeLanguageOn dflags
              overlap_flag | incoherent_ok = Incoherent safeOverlap
                           | overlap_ok    = OverlapOk safeOverlap
                           | otherwise     = NoOverlap safeOverlap

        ; return overlap_flag }

tcGetInstEnvs :: TcM (InstEnv, InstEnv)
-- Gets both the external-package inst-env
-- and the home-pkg inst env (includes module being compiled)
tcGetInstEnvs = do { eps <- getEps; env <- getGblEnv;
		     return (eps_inst_env eps, tcg_inst_env env) }

tcExtendLocalInstEnv :: [ClsInst] -> TcM a -> TcM a
  -- Add new locally-defined instances
tcExtendLocalInstEnv dfuns thing_inside
 = do { traceDFuns dfuns
      ; env <- getGblEnv
      ; inst_env' <- foldlM addLocalInst (tcg_inst_env env) dfuns
      ; let env' = env { tcg_insts = dfuns ++ tcg_insts env,
			 tcg_inst_env = inst_env' }
      ; setGblEnv env' thing_inside }

addLocalInst :: InstEnv -> ClsInst -> TcM InstEnv
-- Check that the proposed new instance is OK, 
-- and then add it to the home inst env
-- If overwrite_inst, then we can overwrite a direct match
addLocalInst home_ie ispec
   = do {
         -- Instantiate the dfun type so that we extend the instance
         -- envt with completely fresh template variables
         -- This is important because the template variables must
         -- not overlap with anything in the things being looked up
         -- (since we do unification).  
             --
             -- We use tcInstSkolType because we don't want to allocate fresh
             --  *meta* type variables.
             --
             -- We use UnkSkol --- and *not* InstSkol or PatSkol --- because
             -- these variables must be bindable by tcUnifyTys.  See
             -- the call to tcUnifyTys in InstEnv, and the special
             -- treatment that instanceBindFun gives to isOverlappableTyVar
             -- This is absurdly delicate.

             -- Load imported instances, so that we report
             -- duplicates correctly
           eps <- getEps
         ; let inst_envs = (eps_inst_env eps, home_ie)
               (tvs, cls, tys) = instanceHead ispec

             -- Check functional dependencies
         ; case checkFunDeps inst_envs ispec of
             Just specs -> funDepErr ispec specs
             Nothing    -> return ()

             -- Check for duplicate instance decls
         ; let (matches, unifs, _) = lookupInstEnv inst_envs cls tys
               dup_ispecs = [ dup_ispec 
                            | (dup_ispec, _) <- matches
                            , let dup_tys = is_tys dup_ispec
                            , isJust (tcMatchTys (mkVarSet tvs) tys dup_tys)]
                             
             -- Find memebers of the match list which ispec itself matches.
             -- If the match is 2-way, it's a duplicate
             -- If it's a duplicate, but we can overwrite home package dups, then overwrite
         ; isGHCi <- getIsGHCi
         ; overlapFlag <- getOverlapFlag
         ; case isGHCi of
             False -> case dup_ispecs of
                 dup : _ -> dupInstErr ispec dup >> return (extendInstEnv home_ie ispec)
                 []      -> return (extendInstEnv home_ie ispec)
             True  -> case (dup_ispecs, home_ie_matches, unifs, overlapFlag) of
                 (_, _:_, _, _)      -> return (overwriteInstEnv home_ie ispec)
                 (dup:_, [], _, _)   -> dupInstErr ispec dup >> return (extendInstEnv home_ie ispec)
                 ([], _, u:_, NoOverlap _)    -> overlappingInstErr ispec u >> return (extendInstEnv home_ie ispec)
                 _                   -> return (extendInstEnv home_ie ispec)
               where (homematches, _) = lookupInstEnv' home_ie cls tys
                     home_ie_matches = [ dup_ispec 
                         | (dup_ispec, _) <- homematches
                         , let dup_tys = is_tys dup_ispec
                         , isJust (tcMatchTys (mkVarSet tvs) tys dup_tys)] }

traceDFuns :: [ClsInst] -> TcRn ()
traceDFuns ispecs
  = traceTc "Adding instances:" (vcat (map pp ispecs))
  where
    pp ispec = ppr (instanceDFunId ispec) <+> colon <+> ppr ispec
	-- Print the dfun name itself too

funDepErr :: ClsInst -> [ClsInst] -> TcRn ()
funDepErr ispec ispecs
  = addClsInstsErr (ptext (sLit "Functional dependencies conflict between instance declarations:"))
                    (ispec : ispecs)

dupInstErr :: ClsInst -> ClsInst -> TcRn ()
dupInstErr ispec dup_ispec
  = addClsInstsErr (ptext (sLit "Duplicate instance declarations:"))
	            [ispec, dup_ispec]

overlappingInstErr :: ClsInst -> ClsInst -> TcRn ()
overlappingInstErr ispec dup_ispec
  = addClsInstsErr (ptext (sLit "Overlapping instance declarations:")) 
                    [ispec, dup_ispec]

addClsInstsErr :: SDoc -> [ClsInst] -> TcRn ()
addClsInstsErr herald ispecs
  = setSrcSpan (getSrcSpan (head sorted)) $
    addErr (hang herald 2 (pprInstances sorted))
 where
   sorted = sortWith getSrcLoc ispecs
   -- The sortWith just arranges that instances are dislayed in order
   -- of source location, which reduced wobbling in error messages,
   -- and is better for users
\end{code} %************************************************************************ %* * Simple functions over evidence variables %* * %************************************************************************ \begin{code}
hasEqualities :: [EvVar] -> Bool
-- Has a bunch of canonical constraints (all givens) got any equalities in it?
hasEqualities givens = any (has_eq . evVarPred) givens
  where
    has_eq = has_eq' . classifyPredType
    
    -- See Note [Float Equalities out of Implications] in TcSimplify
    has_eq' (EqPred {})          = True
    has_eq' (ClassPred cls _tys) = any has_eq (classSCTheta cls)
    has_eq' (TuplePred ts)       = any has_eq ts
    has_eq' (IrredPred _)        = True -- Might have equalities in it after reduction?
       -- This is conservative.  e.g. if there's a constraint function FC with
       --    type instance FC Int = Show
       -- then we won't float from inside a given constraint (FC Int a), even though
       -- it's really the innocuous (Show a).  Too bad!  Add a type signature

---------------- Getting free tyvars -------------------------
tyVarsOfCt :: Ct -> TcTyVarSet
-- NB: the 
tyVarsOfCt (CTyEqCan { cc_tyvar = tv, cc_rhs = xi })    = extendVarSet (tyVarsOfType xi) tv
tyVarsOfCt (CFunEqCan { cc_tyargs = tys, cc_rhs = xi }) = tyVarsOfTypes (xi:tys)
tyVarsOfCt (CDictCan { cc_tyargs = tys }) 	        = tyVarsOfTypes tys
tyVarsOfCt (CIrredEvCan { cc_ev = ev })                 = tyVarsOfType (ctEvPred ev)
tyVarsOfCt (CHoleCan { cc_ev = ev })                    = tyVarsOfType (ctEvPred ev)
tyVarsOfCt (CNonCanonical { cc_ev = ev })               = tyVarsOfType (ctEvPred ev)

tyVarsOfCts :: Cts -> TcTyVarSet
tyVarsOfCts = foldrBag (unionVarSet . tyVarsOfCt) emptyVarSet

tyVarsOfWC :: WantedConstraints -> TyVarSet
-- Only called on *zonked* things, hence no need to worry about flatten-skolems
tyVarsOfWC (WC { wc_flat = flat, wc_impl = implic, wc_insol = insol })
  = tyVarsOfCts flat `unionVarSet`
    tyVarsOfBag tyVarsOfImplic implic `unionVarSet`
    tyVarsOfCts insol

tyVarsOfImplic :: Implication -> TyVarSet
-- Only called on *zonked* things, hence no need to worry about flatten-skolems
tyVarsOfImplic (Implic { ic_skols = skols, ic_fsks = fsks
                             , ic_given = givens, ic_wanted = wanted })
  = (tyVarsOfWC wanted `unionVarSet` tyVarsOfTypes (map evVarPred givens))
    `delVarSetList` skols `delVarSetList` fsks

tyVarsOfBag :: (a -> TyVarSet) -> Bag a -> TyVarSet
tyVarsOfBag tvs_of = foldrBag (unionVarSet . tvs_of) emptyVarSet

---------------- Tidying -------------------------

tidyCt :: TidyEnv -> Ct -> Ct
-- Used only in error reporting
-- Also converts it to non-canonical
tidyCt env ct 
  = case ct of
     CHoleCan { cc_ev = ev }
       -> ct { cc_ev = tidy_ev env ev }
     _ -> CNonCanonical { cc_ev = tidy_ev env (cc_ev ct)
                        , cc_loc  = cc_loc ct }
  where 
    tidy_ev :: TidyEnv -> CtEvidence -> CtEvidence
     -- NB: we do not tidy the ctev_evtm/var field because we don't 
     --     show it in error messages
    tidy_ev env ctev@(CtGiven { ctev_pred = pred })
      = ctev { ctev_pred = tidyType env pred }
    tidy_ev env ctev@(CtWanted { ctev_pred = pred })
      = ctev { ctev_pred = tidyType env pred }
    tidy_ev env ctev@(CtDerived { ctev_pred = pred })
      = ctev { ctev_pred = tidyType env pred }

tidyEvVar :: TidyEnv -> EvVar -> EvVar
tidyEvVar env var = setVarType var (tidyType env (varType var))

tidySkolemInfo :: TidyEnv -> SkolemInfo -> (TidyEnv, SkolemInfo)
tidySkolemInfo env (SigSkol cx ty) 
  = (env', SigSkol cx ty')
  where
    (env', ty') = tidyOpenType env ty

tidySkolemInfo env (InferSkol ids) 
  = (env', InferSkol ids')
  where
    (env', ids') = mapAccumL do_one env ids
    do_one env (name, ty) = (env', (name, ty'))
       where
         (env', ty') = tidyOpenType env ty

tidySkolemInfo env (UnifyForAllSkol skol_tvs ty) 
  = (env1, UnifyForAllSkol skol_tvs' ty')
  where
    env1 = tidyFreeTyVars env (tyVarsOfType ty `delVarSetList` skol_tvs)
    (env2, skol_tvs') = tidyTyVarBndrs env1 skol_tvs
    ty'               = tidyType env2 ty

tidySkolemInfo env info = (env, info)
\end{code}