-----------------------------------------------------------------------------
--
-- (c) The University of Glasgow 2006
--
-- The purpose of this module is to transform an HsExpr into a CoreExpr which
-- when evaluated, returns a (Meta.Q Meta.Exp) computation analogous to the
-- input HsExpr. We do this in the DsM monad, which supplies access to
-- CoreExpr's of the "smart constructors" of the Meta.Exp datatype.
--
-- It also defines a bunch of knownKeyNames, in the same way as is done
-- in prelude/PrelNames.  It's much more convenient to do it here, because
-- otherwise we have to recompile PrelNames whenever we add a Name, which is
-- a Royal Pain (triggers other recompilation).
-----------------------------------------------------------------------------

module DsMeta( dsBracket,
               templateHaskellNames, qTyConName, nameTyConName,
               liftName, liftStringName, expQTyConName, patQTyConName,
               decQTyConName, decsQTyConName, typeQTyConName,
               decTyConName, typeTyConName, mkNameG_dName, mkNameG_vName, mkNameG_tcName,
               quoteExpName, quotePatName, quoteDecName, quoteTypeName
                ) where

#include "HsVersions.h"

import {-# SOURCE #-}   DsExpr ( dsExpr )

import MatchLit
import DsMonad

import qualified Language.Haskell.TH as TH

import HsSyn
import Class
import PrelNames
-- To avoid clashes with DsMeta.varName we must make a local alias for
-- OccName.varName we do this by removing varName from the import of
-- OccName above, making a qualified instance of OccName and using
-- OccNameAlias.varName where varName ws previously used in this file.
import qualified OccName( isDataOcc, isVarOcc, isTcOcc, varName, tcName, dataName )

import Module
import Id
import Name hiding( isVarOcc, isTcOcc, varName, tcName )
import NameEnv
import TcType
import TyCon
import TysWiredIn
import TysPrim ( liftedTypeKindTyConName, constraintKindTyConName )
import CoreSyn
import MkCore
import CoreUtils
import SrcLoc
import Unique
import BasicTypes
import Outputable
import Bag
import DynFlags
import FastString
import ForeignCall
import Util

import Data.Maybe
import Control.Monad
import Data.List

-----------------------------------------------------------------------------
dsBracket :: HsBracket Name -> [PendingSplice] -> DsM CoreExpr
-- Returns a CoreExpr of type TH.ExpQ
-- The quoted thing is parameterised over Name, even though it has
-- been type checked.  We don't want all those type decorations!

dsBracket brack splices
  = dsExtendMetaEnv new_bit (do_brack brack)
  where
    new_bit = mkNameEnv [(n, Splice (unLoc e)) | (n,e) <- splices]

    do_brack (VarBr _ n) = do { MkC e1  <- lookupOcc n ; return e1 }
    do_brack (ExpBr e)   = do { MkC e1  <- repLE e     ; return e1 }
    do_brack (PatBr p)   = do { MkC p1  <- repTopP p   ; return p1 }
    do_brack (TypBr t)   = do { MkC t1  <- repLTy t    ; return t1 }
    do_brack (DecBrG gp) = do { MkC ds1 <- repTopDs gp ; return ds1 }
    do_brack (DecBrL _)  = panic "dsBracket: unexpected DecBrL"

{- -------------- Examples --------------------

  [| \x -> x |]
====>
  gensym (unpackString "x"#) `bindQ` \ x1::String ->
  lam (pvar x1) (var x1)


  [| \x -> $(f [| x |]) |]
====>
  gensym (unpackString "x"#) `bindQ` \ x1::String ->
  lam (pvar x1) (f (var x1))
-}


-------------------------------------------------------
--                      Declarations
-------------------------------------------------------

repTopP :: LPat Name -> DsM (Core TH.PatQ)
repTopP pat = do { ss <- mkGenSyms (collectPatBinders pat)
                 ; pat' <- addBinds ss (repLP pat)
                 ; wrapGenSyms ss pat' }

repTopDs :: HsGroup Name -> DsM (Core (TH.Q [TH.Dec]))
repTopDs group
 = do { let { tv_bndrs = hsSigTvBinders (hs_valds group)
            ; bndrs = tv_bndrs ++ hsGroupBinders group } ;
        ss <- mkGenSyms bndrs ;

        -- Bind all the names mainly to avoid repeated use of explicit strings.
        -- Thus we get
        --      do { t :: String <- genSym "T" ;
        --           return (Data t [] ...more t's... }
        -- The other important reason is that the output must mention
        -- only "T", not "Foo:T" where Foo is the current module

        decls <- addBinds ss (do {
                        fix_ds  <- mapM repFixD (hs_fixds group) ;
                        val_ds  <- rep_val_binds (hs_valds group) ;
                        tycl_ds <- mapM repTyClD (concat (hs_tyclds group)) ;
                        inst_ds <- mapM repInstD (hs_instds group) ;
                        rule_ds <- mapM repRuleD (hs_ruleds group) ;
                        for_ds  <- mapM repForD  (hs_fords group) ;
                        -- more needed
                        return (de_loc $ sort_by_loc $
                                val_ds ++ catMaybes tycl_ds ++ fix_ds
                                       ++ inst_ds ++ rule_ds ++ for_ds) }) ;

        decl_ty <- lookupType decQTyConName ;
        let { core_list = coreList' decl_ty decls } ;

        dec_ty <- lookupType decTyConName ;
        q_decs  <- repSequenceQ dec_ty core_list ;

        wrapGenSyms ss q_decs
      }


hsSigTvBinders :: HsValBinds Name -> [Name]
-- See Note [Scoped type variables in bindings]
hsSigTvBinders binds
  = [hsLTyVarName tv | L _ (TypeSig _ (L _ (HsForAllTy Explicit qtvs _ _))) <- sigs
                     , tv <- hsQTvBndrs qtvs]
  where
    sigs = case binds of
             ValBindsIn  _ sigs -> sigs
             ValBindsOut _ sigs -> sigs


{- Notes

Note [Scoped type variables in bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
   f :: forall a. a -> a
   f x = x::a
Here the 'forall a' brings 'a' into scope over the binding group.
To achieve this we

  a) Gensym a binding for 'a' at the same time as we do one for 'f'
     collecting the relevant binders with hsSigTvBinders

  b) When processing the 'forall', don't gensym

The relevant places are signposted with references to this Note

Note [Binders and occurrences]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we desugar [d| data T = MkT |]
we want to get
        Data "T" [] [Con "MkT" []] []
and *not*
        Data "Foo:T" [] [Con "Foo:MkT" []] []
That is, the new data decl should fit into whatever new module it is
asked to fit in.   We do *not* clone, though; no need for this:
        Data "T79" ....

But if we see this:
        data T = MkT
        foo = reifyDecl T

then we must desugar to
        foo = Data "Foo:T" [] [Con "Foo:MkT" []] []

So in repTopDs we bring the binders into scope with mkGenSyms and addBinds.
And we use lookupOcc, rather than lookupBinder
in repTyClD and repC.

-}

-- represent associated family instances
--
repTyClD :: LTyClDecl Name -> DsM (Maybe (SrcSpan, Core TH.DecQ))

repTyClD (L loc (FamDecl { tcdFam = fam })) = liftM Just $ repFamilyDecl (L loc fam)

repTyClD (L loc (SynDecl { tcdLName = tc, tcdTyVars = tvs, tcdRhs = rhs }))
  = do { tc1 <- lookupLOcc tc           -- See note [Binders and occurrences]
       ; dec <- addTyClTyVarBinds tvs $ \bndrs ->
                repSynDecl tc1 bndrs rhs
       ; return (Just (loc, dec)) }

repTyClD (L loc (DataDecl { tcdLName = tc, tcdTyVars = tvs, tcdDataDefn = defn }))
  = do { tc1 <- lookupLOcc tc           -- See note [Binders and occurrences]
       ; tc_tvs <- mk_extra_tvs tc tvs defn
       ; dec <- addTyClTyVarBinds tc_tvs $ \bndrs ->
                repDataDefn tc1 bndrs Nothing (hsLTyVarNames tc_tvs) defn
       ; return (Just (loc, dec)) }

repTyClD (L loc (ClassDecl { tcdCtxt = cxt, tcdLName = cls,
                             tcdTyVars = tvs, tcdFDs = fds,
                             tcdSigs = sigs, tcdMeths = meth_binds,
                             tcdATs = ats, tcdATDefs = [] }))
  = do { cls1 <- lookupLOcc cls         -- See note [Binders and occurrences]
       ; dec  <- addTyVarBinds tvs $ \bndrs ->
           do { cxt1   <- repLContext cxt
              ; sigs1  <- rep_sigs sigs
              ; binds1 <- rep_binds meth_binds
              ; fds1   <- repLFunDeps fds
              ; ats1   <- repFamilyDecls ats
              ; decls1 <- coreList decQTyConName (ats1 ++ sigs1 ++ binds1)
              ; repClass cxt1 cls1 bndrs fds1 decls1
              }
       ; return $ Just (loc, dec)
       }

-- Un-handled cases
repTyClD (L loc d) = putSrcSpanDs loc $
                     do { warnDs (hang ds_msg 4 (ppr d))
                        ; return Nothing }

-------------------------
repDataDefn :: Core TH.Name -> Core [TH.TyVarBndr]
            -> Maybe (Core [TH.TypeQ])
            -> [Name] -> HsDataDefn Name
            -> DsM (Core TH.DecQ)
repDataDefn tc bndrs opt_tys tv_names
          (HsDataDefn { dd_ND = new_or_data, dd_ctxt = cxt
                      , dd_cons = cons, dd_derivs = mb_derivs })
  = do { cxt1     <- repLContext cxt
       ; derivs1  <- repDerivs mb_derivs
       ; case new_or_data of
           NewType  -> do { con1 <- repC tv_names (head cons)
                          ; repNewtype cxt1 tc bndrs opt_tys con1 derivs1 }
           DataType -> do { cons1 <- repList conQTyConName (repC tv_names) cons
                          ; repData cxt1 tc bndrs opt_tys cons1 derivs1 } }

repSynDecl :: Core TH.Name -> Core [TH.TyVarBndr]
          -> LHsType Name
          -> DsM (Core TH.DecQ)
repSynDecl tc bndrs ty
  = do { ty1 <- repLTy ty
       ; repTySyn tc bndrs ty1 }

repFamilyDecl :: LFamilyDecl Name -> DsM (SrcSpan, Core TH.DecQ)
repFamilyDecl (L loc (FamilyDecl { fdInfo    = info,
                                   fdLName   = tc,
                                   fdTyVars  = tvs,
                                   fdKindSig = opt_kind }))
  = do { tc1 <- lookupLOcc tc           -- See note [Binders and occurrences]
       ; dec <- addTyClTyVarBinds tvs $ \bndrs ->
           case (opt_kind, info) of 
                  (Nothing, ClosedTypeFamily eqns) ->
                    do { eqns1 <- mapM repTyFamEqn eqns
                       ; eqns2 <- coreList tySynEqnQTyConName eqns1
                       ; repClosedFamilyNoKind tc1 bndrs eqns2 }
                  (Just ki, ClosedTypeFamily eqns) ->
                    do { eqns1 <- mapM repTyFamEqn eqns
                       ; eqns2 <- coreList tySynEqnQTyConName eqns1
                       ; ki1 <- repLKind ki
                       ; repClosedFamilyKind tc1 bndrs ki1 eqns2 }              
                  (Nothing, _) ->
                    do { info' <- repFamilyInfo info
                       ; repFamilyNoKind info' tc1 bndrs }
                  (Just ki, _) ->
                    do { info' <- repFamilyInfo info
                       ; ki1 <- repLKind ki 
                       ; repFamilyKind info' tc1 bndrs ki1 }
       ; return (loc, dec)
       }

repFamilyDecls :: [LFamilyDecl Name] -> DsM [Core TH.DecQ]
repFamilyDecls fds = liftM de_loc (mapM repFamilyDecl fds)

-------------------------
mk_extra_tvs :: Located Name -> LHsTyVarBndrs Name
             -> HsDataDefn Name -> DsM (LHsTyVarBndrs Name)
-- If there is a kind signature it must be of form
--    k1 -> .. -> kn -> *
-- Return type variables [tv1:k1, tv2:k2, .., tvn:kn]
mk_extra_tvs tc tvs defn
  | HsDataDefn { dd_kindSig = Just hs_kind } <- defn
  = do { extra_tvs <- go hs_kind
       ; return (tvs { hsq_tvs = hsq_tvs tvs ++ extra_tvs }) }
  | otherwise
  = return tvs
  where
    go :: LHsKind Name -> DsM [LHsTyVarBndr Name]
    go (L loc (HsFunTy kind rest))
      = do { uniq <- newUnique
           ; let { occ = mkTyVarOccFS (fsLit "t")
                 ; nm = mkInternalName uniq occ loc
                 ; hs_tv = L loc (HsTyVarBndr nm (Just kind) Nothing) }
           ; hs_tvs <- go rest
           ; return (hs_tv : hs_tvs) }

    go (L _ (HsTyVar n))
      | n == liftedTypeKindTyConName
      = return []

    go _ = failWithDs (ptext (sLit "Malformed kind signature for") <+> ppr tc)

-------------------------
-- represent fundeps
--
repLFunDeps :: [Located (FunDep Name)] -> DsM (Core [TH.FunDep])
repLFunDeps fds = repList funDepTyConName repLFunDep fds

repLFunDep :: Located (FunDep Name) -> DsM (Core TH.FunDep)
repLFunDep (L _ (xs, ys)) = do xs' <- repList nameTyConName lookupBinder xs
                               ys' <- repList nameTyConName lookupBinder ys
                               repFunDep xs' ys'

-- represent family declaration flavours
--
repFamilyInfo :: FamilyInfo Name -> DsM (Core TH.FamFlavour)
repFamilyInfo OpenTypeFamily      = rep2 typeFamName []
repFamilyInfo DataFamily          = rep2 dataFamName []
repFamilyInfo ClosedTypeFamily {} = panic "repFamilyInfo"

-- Represent instance declarations
--
repInstD :: LInstDecl Name -> DsM (SrcSpan, Core TH.DecQ)
repInstD (L loc (TyFamInstD { tfid_inst = fi_decl }))
  = do { dec <- repTyFamInstD fi_decl
       ; return (loc, dec) }
repInstD (L loc (DataFamInstD { dfid_inst = fi_decl }))
  = do { dec <- repDataFamInstD fi_decl
       ; return (loc, dec) }
repInstD (L loc (ClsInstD { cid_inst = cls_decl }))
  = do { dec <- repClsInstD cls_decl
       ; return (loc, dec) }

repClsInstD :: ClsInstDecl Name -> DsM (Core TH.DecQ)
repClsInstD (ClsInstDecl { cid_poly_ty = ty, cid_binds = binds
                         , cid_sigs = prags, cid_tyfam_insts = ats
                         , cid_datafam_insts = adts })
  = addTyVarBinds tvs $ \_ ->
            -- We must bring the type variables into scope, so their
            -- occurrences don't fail, even though the binders don't
            -- appear in the resulting data structure
            --
            -- But we do NOT bring the binders of 'binds' into scope
            -- because they are properly regarded as occurrences
            -- For example, the method names should be bound to
            -- the selector Ids, not to fresh names (Trac #5410)
            --
            do { cxt1 <- repContext cxt
               ; cls_tcon <- repTy (HsTyVar (unLoc cls))
               ; cls_tys <- repLTys tys
               ; inst_ty1 <- repTapps cls_tcon cls_tys
               ; binds1 <- rep_binds binds
               ; prags1 <- rep_sigs prags
               ; ats1 <- mapM (repTyFamInstD . unLoc) ats
               ; adts1 <- mapM (repDataFamInstD . unLoc) adts
               ; decls <- coreList decQTyConName (ats1 ++ adts1 ++ binds1 ++ prags1)
               ; repInst cxt1 inst_ty1 decls }
 where
   Just (tvs, cxt, cls, tys) = splitLHsInstDeclTy_maybe ty

repTyFamInstD :: TyFamInstDecl Name -> DsM (Core TH.DecQ)
repTyFamInstD decl@(TyFamInstDecl { tfid_eqn = eqn })
  = do { let tc_name = tyFamInstDeclLName decl
       ; tc <- lookupLOcc tc_name               -- See note [Binders and occurrences]  
       ; eqn1 <- repTyFamEqn eqn
       ; repTySynInst tc eqn1 }

repTyFamEqn :: LTyFamInstEqn Name -> DsM (Core TH.TySynEqnQ)
repTyFamEqn (L loc (TyFamInstEqn { tfie_pats = HsWB { hswb_cts = tys
                                                    , hswb_kvs = kv_names
                                                    , hswb_tvs = tv_names }
                                 , tfie_rhs = rhs }))
  = do { let hs_tvs = HsQTvs { hsq_kvs = kv_names
                             , hsq_tvs = userHsTyVarBndrs loc tv_names }   -- Yuk
       ; addTyClTyVarBinds hs_tvs $ \ _ ->
         do { tys1 <- repLTys tys
            ; tys2 <- coreList typeQTyConName tys1
            ; rhs1 <- repLTy rhs
            ; repTySynEqn tys2 rhs1 } }

repDataFamInstD :: DataFamInstDecl Name -> DsM (Core TH.DecQ)
repDataFamInstD (DataFamInstDecl { dfid_tycon = tc_name
                                 , dfid_pats = HsWB { hswb_cts = tys, hswb_kvs = kv_names, hswb_tvs = tv_names }
                                 , dfid_defn = defn })
  = do { tc <- lookupLOcc tc_name               -- See note [Binders and occurrences]
       ; let loc = getLoc tc_name
             hs_tvs = HsQTvs { hsq_kvs = kv_names, hsq_tvs = userHsTyVarBndrs loc tv_names }   -- Yuk
       ; addTyClTyVarBinds hs_tvs $ \ bndrs ->
         do { tys1 <- repList typeQTyConName repLTy tys
            ; repDataDefn tc bndrs (Just tys1) tv_names defn } }

repForD :: Located (ForeignDecl Name) -> DsM (SrcSpan, Core TH.DecQ)
repForD (L loc (ForeignImport name typ _ (CImport cc s mch cis)))
 = do MkC name' <- lookupLOcc name
      MkC typ' <- repLTy typ
      MkC cc' <- repCCallConv cc
      MkC s' <- repSafety s
      cis' <- conv_cimportspec cis
      MkC str <- coreStringLit (static ++ chStr ++ cis')
      dec <- rep2 forImpDName [cc', s', str, name', typ']
      return (loc, dec)
 where
    conv_cimportspec (CLabel cls) = notHandled "Foreign label" (doubleQuotes (ppr cls))
    conv_cimportspec (CFunction DynamicTarget) = return "dynamic"
    conv_cimportspec (CFunction (StaticTarget fs _ True)) = return (unpackFS fs)
    conv_cimportspec (CFunction (StaticTarget _  _ False)) = panic "conv_cimportspec: values not supported yet"
    conv_cimportspec CWrapper = return "wrapper"
    static = case cis of
                 CFunction (StaticTarget _ _ _) -> "static "
                 _ -> ""
    chStr = case mch of
            Nothing -> ""
            Just (Header h) -> unpackFS h ++ " "
repForD decl = notHandled "Foreign declaration" (ppr decl)

repCCallConv :: CCallConv -> DsM (Core TH.Callconv)
repCCallConv CCallConv = rep2 cCallName []
repCCallConv StdCallConv = rep2 stdCallName []
repCCallConv callConv    = notHandled "repCCallConv" (ppr callConv)

repSafety :: Safety -> DsM (Core TH.Safety)
repSafety PlayRisky = rep2 unsafeName []
repSafety PlayInterruptible = rep2 interruptibleName []
repSafety PlaySafe = rep2 safeName []

repFixD :: LFixitySig Name -> DsM (SrcSpan, Core TH.DecQ)
repFixD (L loc (FixitySig name (Fixity prec dir)))
  = do { MkC name' <- lookupLOcc name
       ; MkC prec' <- coreIntLit prec
       ; let rep_fn = case dir of
                        InfixL -> infixLDName
                        InfixR -> infixRDName
                        InfixN -> infixNDName
       ; dec <- rep2 rep_fn [prec', name']
       ; return (loc, dec) }

repRuleD :: LRuleDecl Name -> DsM (SrcSpan, Core TH.DecQ)
repRuleD (L loc (HsRule n act bndrs lhs _ rhs _))
  = do { let bndr_names = concatMap ruleBndrNames bndrs
       ; ss <- mkGenSyms bndr_names
       ; rule1 <- addBinds ss $
                  do { bndrs' <- repList ruleBndrQTyConName repRuleBndr bndrs
                     ; n'   <- coreStringLit $ unpackFS n
                     ; act' <- repPhases act
                     ; lhs' <- repLE lhs
                     ; rhs' <- repLE rhs
                     ; repPragRule n' bndrs' lhs' rhs' act' }
       ; rule2 <- wrapGenSyms ss rule1
       ; return (loc, rule2) }

ruleBndrNames :: RuleBndr Name -> [Name]
ruleBndrNames (RuleBndr n)      = [unLoc n]
ruleBndrNames (RuleBndrSig n (HsWB { hswb_kvs = kvs, hswb_tvs = tvs }))
  = unLoc n : kvs ++ tvs

repRuleBndr :: RuleBndr Name -> DsM (Core TH.RuleBndrQ)
repRuleBndr (RuleBndr n)
  = do { MkC n' <- lookupLBinder n
       ; rep2 ruleVarName [n'] }
repRuleBndr (RuleBndrSig n (HsWB { hswb_cts = ty }))
  = do { MkC n'  <- lookupLBinder n
       ; MkC ty' <- repLTy ty
       ; rep2 typedRuleVarName [n', ty'] }

ds_msg :: SDoc
ds_msg = ptext (sLit "Cannot desugar this Template Haskell declaration:")

-------------------------------------------------------
--                      Constructors
-------------------------------------------------------

repC :: [Name] -> LConDecl Name -> DsM (Core TH.ConQ)
repC _ (L _ (ConDecl { con_name = con, con_qvars = con_tvs, con_cxt = L _ []
                     , con_details = details, con_res = ResTyH98 }))
  | null (hsQTvBndrs con_tvs)
  = do { con1 <- lookupLOcc con         -- See Note [Binders and occurrences]
       ; repConstr con1 details  }

repC tvs (L _ (ConDecl { con_name = con
                       , con_qvars = con_tvs, con_cxt = L _ ctxt
                       , con_details = details
                       , con_res = res_ty }))
  = do { (eq_ctxt, con_tv_subst) <- mkGadtCtxt tvs res_ty
       ; let ex_tvs = HsQTvs { hsq_kvs = filterOut (in_subst con_tv_subst) (hsq_kvs con_tvs)
                             , hsq_tvs = filterOut (in_subst con_tv_subst . hsLTyVarName) (hsq_tvs con_tvs) }

       ; binds <- mapM dupBinder con_tv_subst
       ; dsExtendMetaEnv (mkNameEnv binds) $     -- Binds some of the con_tvs
         addTyVarBinds ex_tvs $ \ ex_bndrs ->   -- Binds the remaining con_tvs
    do { con1      <- lookupLOcc con    -- See Note [Binders and occurrences]
       ; c'        <- repConstr con1 details
       ; ctxt'     <- repContext (eq_ctxt ++ ctxt)
       ; rep2 forallCName [unC ex_bndrs, unC ctxt', unC c'] } }

in_subst :: [(Name,Name)] -> Name -> Bool
in_subst []          _ = False
in_subst ((n',_):ns) n = n==n' || in_subst ns n

mkGadtCtxt :: [Name]            -- Tyvars of the data type
           -> ResType (LHsType Name)
           -> DsM (HsContext Name, [(Name,Name)])
-- Given a data type in GADT syntax, figure out the equality
-- context, so that we can represent it with an explicit
-- equality context, because that is the only way to express
-- the GADT in TH syntax
--
-- Example:
-- data T a b c where { MkT :: forall d e. d -> e -> T d [e] e
--     mkGadtCtxt [a,b,c] [d,e] (T d [e] e)
--   returns
--     (b~[e], c~e), [d->a]
--
-- This function is fiddly, but not really hard
mkGadtCtxt _ ResTyH98
  = return ([], [])
mkGadtCtxt data_tvs (ResTyGADT res_ty)
  | Just (_, tys) <- hsTyGetAppHead_maybe res_ty
  , data_tvs `equalLength` tys
  = return (go [] [] (data_tvs `zip` tys))

  | otherwise
  = failWithDs (ptext (sLit "Malformed constructor result type:") <+> ppr res_ty)
  where
    go cxt subst [] = (cxt, subst)
    go cxt subst ((data_tv, ty) : rest)
       | Just con_tv <- is_hs_tyvar ty
       , isTyVarName con_tv
       , not (in_subst subst con_tv)
       = go cxt ((con_tv, data_tv) : subst) rest
       | otherwise
       = go (eq_pred : cxt) subst rest
       where
         loc = getLoc ty
         eq_pred = L loc (HsEqTy (L loc (HsTyVar data_tv)) ty)

    is_hs_tyvar (L _ (HsTyVar n))  = Just n   -- Type variables *and* tycons
    is_hs_tyvar (L _ (HsParTy ty)) = is_hs_tyvar ty
    is_hs_tyvar _                  = Nothing


repBangTy :: LBangType Name -> DsM (Core (TH.StrictTypeQ))
repBangTy ty= do
  MkC s <- rep2 str []
  MkC t <- repLTy ty'
  rep2 strictTypeName [s, t]
  where
    (str, ty') = case ty of
                   L _ (HsBangTy (HsUserBang (Just True) True) ty) -> (unpackedName,  ty)
                   L _ (HsBangTy (HsUserBang _     True) ty)       -> (isStrictName,  ty)
                   _                               -> (notStrictName, ty)

-------------------------------------------------------
--                      Deriving clause
-------------------------------------------------------

repDerivs :: Maybe [LHsType Name] -> DsM (Core [TH.Name])
repDerivs Nothing = coreList nameTyConName []
repDerivs (Just ctxt)
  = repList nameTyConName rep_deriv ctxt
  where
    rep_deriv :: LHsType Name -> DsM (Core TH.Name)
        -- Deriving clauses must have the simple H98 form
    rep_deriv ty
      | Just (cls, []) <- splitHsClassTy_maybe (unLoc ty)
      = lookupOcc cls
      | otherwise
      = notHandled "Non-H98 deriving clause" (ppr ty)


-------------------------------------------------------
--   Signatures in a class decl, or a group of bindings
-------------------------------------------------------

rep_sigs :: [LSig Name] -> DsM [Core TH.DecQ]
rep_sigs sigs = do locs_cores <- rep_sigs' sigs
                   return $ de_loc $ sort_by_loc locs_cores

rep_sigs' :: [LSig Name] -> DsM [(SrcSpan, Core TH.DecQ)]
        -- We silently ignore ones we don't recognise
rep_sigs' sigs = do { sigs1 <- mapM rep_sig sigs ;
                     return (concat sigs1) }

rep_sig :: LSig Name -> DsM [(SrcSpan, Core TH.DecQ)]
        -- Singleton => Ok
        -- Empty     => Too hard, signature ignored
rep_sig (L loc (TypeSig nms ty))      = mapM (rep_ty_sig loc ty) nms
rep_sig (L _   (GenericSig nm _))     = failWithDs msg
  where msg = vcat  [ ptext (sLit "Illegal default signature for") <+> quotes (ppr nm)
                    , ptext (sLit "Default signatures are not supported by Template Haskell") ]

rep_sig (L loc (InlineSig nm ispec))  = rep_inline nm ispec loc
rep_sig (L loc (SpecSig nm ty ispec)) = rep_specialise nm ty ispec loc
rep_sig (L loc (SpecInstSig ty))      = rep_specialiseInst ty loc
rep_sig _                             = return []

rep_ty_sig :: SrcSpan -> LHsType Name -> Located Name
           -> DsM (SrcSpan, Core TH.DecQ)
rep_ty_sig loc (L _ ty) nm
  = do { nm1 <- lookupLOcc nm
       ; ty1 <- rep_ty ty
       ; sig <- repProto nm1 ty1
       ; return (loc, sig) }
  where
    -- We must special-case the top-level explicit for-all of a TypeSig
    -- See Note [Scoped type variables in bindings]
    rep_ty (HsForAllTy Explicit tvs ctxt ty)
      = do { let rep_in_scope_tv tv = do { name <- lookupBinder (hsLTyVarName tv)
                                         ; repTyVarBndrWithKind tv name }
           ; bndrs1 <- repList tyVarBndrTyConName rep_in_scope_tv (hsQTvBndrs tvs)
           ; ctxt1  <- repLContext ctxt
           ; ty1    <- repLTy ty
           ; repTForall bndrs1 ctxt1 ty1 }

    rep_ty ty = repTy ty


rep_inline :: Located Name
           -> InlinePragma      -- Never defaultInlinePragma
           -> SrcSpan
           -> DsM [(SrcSpan, Core TH.DecQ)]
rep_inline nm ispec loc
  = do { nm1    <- lookupLOcc nm
       ; inline <- repInline $ inl_inline ispec
       ; rm     <- repRuleMatch $ inl_rule ispec
       ; phases <- repPhases $ inl_act ispec
       ; pragma <- repPragInl nm1 inline rm phases
       ; return [(loc, pragma)]
       }

rep_specialise :: Located Name -> LHsType Name -> InlinePragma -> SrcSpan
               -> DsM [(SrcSpan, Core TH.DecQ)]
rep_specialise nm ty ispec loc
  = do { nm1 <- lookupLOcc nm
       ; ty1 <- repLTy ty
       ; phases <- repPhases $ inl_act ispec
       ; let inline = inl_inline ispec
       ; pragma <- if isEmptyInlineSpec inline
                   then -- SPECIALISE
                     repPragSpec nm1 ty1 phases
                   else -- SPECIALISE INLINE
                     do { inline1 <- repInline inline
                        ; repPragSpecInl nm1 ty1 inline1 phases }
       ; return [(loc, pragma)]
       }

rep_specialiseInst :: LHsType Name -> SrcSpan -> DsM [(SrcSpan, Core TH.DecQ)]
rep_specialiseInst ty loc
  = do { ty1    <- repLTy ty
       ; pragma <- repPragSpecInst ty1
       ; return [(loc, pragma)] }

repInline :: InlineSpec -> DsM (Core TH.Inline)
repInline NoInline  = dataCon noInlineDataConName
repInline Inline    = dataCon inlineDataConName
repInline Inlinable = dataCon inlinableDataConName
repInline spec      = notHandled "repInline" (ppr spec)

repRuleMatch :: RuleMatchInfo -> DsM (Core TH.RuleMatch)
repRuleMatch ConLike = dataCon conLikeDataConName
repRuleMatch FunLike = dataCon funLikeDataConName

repPhases :: Activation -> DsM (Core TH.Phases)
repPhases (ActiveBefore i) = do { MkC arg <- coreIntLit i
                                ; dataCon' beforePhaseDataConName [arg] }
repPhases (ActiveAfter i)  = do { MkC arg <- coreIntLit i
                                ; dataCon' fromPhaseDataConName [arg] }
repPhases _                = dataCon allPhasesDataConName

-------------------------------------------------------
--                      Types
-------------------------------------------------------

addTyVarBinds :: LHsTyVarBndrs Name                            -- the binders to be added
              -> (Core [TH.TyVarBndr] -> DsM (Core (TH.Q a)))  -- action in the ext env
              -> DsM (Core (TH.Q a))
-- gensym a list of type variables and enter them into the meta environment;
-- the computations passed as the second argument is executed in that extended
-- meta environment and gets the *new* names on Core-level as an argument

addTyVarBinds tvs m
  = do { freshNames <- mkGenSyms (hsLKiTyVarNames tvs)
       ; term <- addBinds freshNames $
                 do { kbs <- repList tyVarBndrTyConName mk_tv_bndr (hsQTvBndrs tvs `zip` freshNames)
                    ; m kbs }
       ; wrapGenSyms freshNames term }
  where
    mk_tv_bndr (tv, (_,v)) = repTyVarBndrWithKind tv (coreVar v)

addTyClTyVarBinds :: LHsTyVarBndrs Name
                  -> (Core [TH.TyVarBndr] -> DsM (Core (TH.Q a)))
                  -> DsM (Core (TH.Q a))

-- Used for data/newtype declarations, and family instances,
-- so that the nested type variables work right
--    instance C (T a) where
--      type W (T a) = blah
-- The 'a' in the type instance is the one bound by the instance decl
addTyClTyVarBinds tvs m
  = do { let tv_names = hsLKiTyVarNames tvs
       ; env <- dsGetMetaEnv
       ; freshNames <- mkGenSyms (filterOut (`elemNameEnv` env) tv_names)
            -- Make fresh names for the ones that are not already in scope
            -- This makes things work for family declarations

       ; term <- addBinds freshNames $
                 do { kbs <- repList tyVarBndrTyConName mk_tv_bndr (hsQTvBndrs tvs)
                    ; m kbs }

       ; wrapGenSyms freshNames term }
  where
    mk_tv_bndr tv = do { v <- lookupBinder (hsLTyVarName tv)
                       ; repTyVarBndrWithKind tv v }

-- Produce kinded binder constructors from the Haskell tyvar binders
--
repTyVarBndrWithKind :: LHsTyVarBndr Name
                     -> Core TH.Name -> DsM (Core TH.TyVarBndr)
repTyVarBndrWithKind (L _ (HsTyVarBndr _ Nothing Nothing)) nm
  = repPlainTV nm
repTyVarBndrWithKind (L _ (HsTyVarBndr _ (Just ki) Nothing)) nm
  = repLKind ki >>= repKindedTV nm
repTyVarBndrWithKind (L _ (HsTyVarBndr _ Nothing (Just r))) nm
  = repRole r >>= repRoledTV nm
repTyVarBndrWithKind (L _ (HsTyVarBndr _ (Just ki) (Just r))) nm
  = do { ki' <- repLKind ki
       ; r'  <- repRole r
       ; repKindedRoledTV nm ki' r' }

-- represent a type context
--
repLContext :: LHsContext Name -> DsM (Core TH.CxtQ)
repLContext (L _ ctxt) = repContext ctxt

repContext :: HsContext Name -> DsM (Core TH.CxtQ)
repContext ctxt = do preds <- repList predQTyConName repLPred ctxt
                     repCtxt preds

-- represent a type predicate
--
repLPred :: LHsType Name -> DsM (Core TH.PredQ)
repLPred (L _ p) = repPred p

repPred :: HsType Name -> DsM (Core TH.PredQ)
repPred ty
  | Just (cls, tys) <- splitHsClassTy_maybe ty
  = do
      cls1 <- lookupOcc cls
      tys1 <- repList typeQTyConName repLTy tys
      repClassP cls1 tys1
repPred (HsEqTy tyleft tyright)
  = do
      tyleft1  <- repLTy tyleft
      tyright1 <- repLTy tyright
      repEqualP tyleft1 tyright1
repPred ty
  = notHandled "Exotic predicate type" (ppr ty)

-- yield the representation of a list of types
--
repLTys :: [LHsType Name] -> DsM [Core TH.TypeQ]
repLTys tys = mapM repLTy tys

-- represent a type
--
repLTy :: LHsType Name -> DsM (Core TH.TypeQ)
repLTy (L _ ty) = repTy ty

repTy :: HsType Name -> DsM (Core TH.TypeQ)
repTy (HsForAllTy _ tvs ctxt ty)  =
  addTyVarBinds tvs $ \bndrs -> do
    ctxt1  <- repLContext ctxt
    ty1    <- repLTy ty
    repTForall bndrs ctxt1 ty1

repTy (HsTyVar n)
  | isTvOcc occ   = do tv1 <- lookupOcc n
                       repTvar tv1
  | isDataOcc occ = do tc1 <- lookupOcc n
                       repPromotedTyCon tc1
  | otherwise     = do tc1 <- lookupOcc n
                       repNamedTyCon tc1
  where
    occ = nameOccName n

repTy (HsAppTy f a)         = do
                                f1 <- repLTy f
                                a1 <- repLTy a
                                repTapp f1 a1
repTy (HsFunTy f a)         = do
                                f1   <- repLTy f
                                a1   <- repLTy a
                                tcon <- repArrowTyCon
                                repTapps tcon [f1, a1]
repTy (HsListTy t)          = do
                                t1   <- repLTy t
                                tcon <- repListTyCon
                                repTapp tcon t1
repTy (HsPArrTy t)          = do
                                t1   <- repLTy t
                                tcon <- repTy (HsTyVar (tyConName parrTyCon))
                                repTapp tcon t1
repTy (HsTupleTy HsUnboxedTuple tys) = do
                                tys1 <- repLTys tys
                                tcon <- repUnboxedTupleTyCon (length tys)
                                repTapps tcon tys1
repTy (HsTupleTy _ tys)     = do tys1 <- repLTys tys
                                 tcon <- repTupleTyCon (length tys)
                                 repTapps tcon tys1
repTy (HsOpTy ty1 (_, n) ty2) = repLTy ((nlHsTyVar (unLoc n) `nlHsAppTy` ty1)
                                   `nlHsAppTy` ty2)
repTy (HsParTy t)           = repLTy t
repTy (HsKindSig t k)       = do
                                t1 <- repLTy t
                                k1 <- repLKind k
                                repTSig t1 k1
repTy (HsSpliceTy splice _ _) = repSplice splice
repTy (HsExplicitListTy _ tys)  = do
                                    tys1 <- repLTys tys
                                    repTPromotedList tys1
repTy (HsExplicitTupleTy _ tys) = do
                                    tys1 <- repLTys tys
                                    tcon <- repPromotedTupleTyCon (length tys)
                                    repTapps tcon tys1
repTy (HsTyLit lit) = do
                        lit' <- repTyLit lit
                        repTLit lit'
repTy ty                      = notHandled "Exotic form of type" (ppr ty)

repTyLit :: HsTyLit -> DsM (Core TH.TyLitQ)
repTyLit (HsNumTy i) = do dflags <- getDynFlags
                          rep2 numTyLitName [mkIntExpr dflags i]
repTyLit (HsStrTy s) = do { s' <- mkStringExprFS s
                         ; rep2 strTyLitName [s']
                         }

-- represent a kind
--
repLKind :: LHsKind Name -> DsM (Core TH.Kind)
repLKind ki
  = do { let (kis, ki') = splitHsFunType ki
       ; kis_rep <- mapM repLKind kis
       ; ki'_rep <- repNonArrowLKind ki'
       ; kcon <- repKArrow
       ; let f k1 k2 = repKApp kcon k1 >>= flip repKApp k2
       ; foldrM f ki'_rep kis_rep
       }

repNonArrowLKind :: LHsKind Name -> DsM (Core TH.Kind)
repNonArrowLKind (L _ ki) = repNonArrowKind ki

repNonArrowKind :: HsKind Name -> DsM (Core TH.Kind)
repNonArrowKind (HsTyVar name)
  | name == liftedTypeKindTyConName = repKStar
  | name == constraintKindTyConName = repKConstraint
  | isTvOcc (nameOccName name)      = lookupOcc name >>= repKVar
  | otherwise                       = lookupOcc name >>= repKCon
repNonArrowKind (HsAppTy f a)       = do  { f' <- repLKind f
                                          ; a' <- repLKind a
                                          ; repKApp f' a'
                                          }
repNonArrowKind (HsListTy k)        = do  { k' <- repLKind k
                                          ; kcon <- repKList
                                          ; repKApp kcon k'
                                          }
repNonArrowKind (HsTupleTy _ ks)    = do  { ks' <- mapM repLKind ks
                                          ; kcon <- repKTuple (length ks)
                                          ; repKApps kcon ks'
                                          }
repNonArrowKind k                   = notHandled "Exotic form of kind" (ppr k)

repRole :: Role -> DsM (Core TH.Role)
repRole Nominal          = rep2 nominalName []
repRole Representational = rep2 representationalName []
repRole Phantom          = rep2 phantomName []

-----------------------------------------------------------------------------
--              Splices
-----------------------------------------------------------------------------

repSplice :: HsSplice Name -> DsM (Core a)
-- See Note [How brackets and nested splices are handled] in TcSplice
-- We return a CoreExpr of any old type; the context should know
repSplice (HsSplice n _)
 = do { mb_val <- dsLookupMetaEnv n
       ; case mb_val of
           Just (Splice e) -> do { e' <- dsExpr e
                                 ; return (MkC e') }
           _ -> pprPanic "HsSplice" (ppr n) }
                        -- Should not happen; statically checked

-----------------------------------------------------------------------------
--              Expressions
-----------------------------------------------------------------------------

repLEs :: [LHsExpr Name] -> DsM (Core [TH.ExpQ])
repLEs es = repList expQTyConName repLE es

-- FIXME: some of these panics should be converted into proper error messages
--        unless we can make sure that constructs, which are plainly not
--        supported in TH already lead to error messages at an earlier stage
repLE :: LHsExpr Name -> DsM (Core TH.ExpQ)
repLE (L loc e) = putSrcSpanDs loc (repE e)

repE :: HsExpr Name -> DsM (Core TH.ExpQ)
repE (HsVar x)            =
  do { mb_val <- dsLookupMetaEnv x
     ; case mb_val of
        Nothing          -> do { str <- globalVar x
                               ; repVarOrCon x str }
        Just (Bound y)   -> repVarOrCon x (coreVar y)
        Just (Splice e)  -> do { e' <- dsExpr e
                               ; return (MkC e') } }
repE e@(HsIPVar _) = notHandled "Implicit parameters" (ppr e)

        -- Remember, we're desugaring renamer output here, so
        -- HsOverlit can definitely occur
repE (HsOverLit l) = do { a <- repOverloadedLiteral l; repLit a }
repE (HsLit l)     = do { a <- repLiteral l;           repLit a }
repE (HsLam (MG { mg_alts = [m] })) = repLambda m
repE (HsLamCase _ (MG { mg_alts = ms }))
                   = do { ms' <- mapM repMatchTup ms
                        ; core_ms <- coreList matchQTyConName ms'
                        ; repLamCase core_ms }
repE (HsApp x y)   = do {a <- repLE x; b <- repLE y; repApp a b}

repE (OpApp e1 op _ e2) =
  do { arg1 <- repLE e1;
       arg2 <- repLE e2;
       the_op <- repLE op ;
       repInfixApp arg1 the_op arg2 }
repE (NegApp x _)        = do
                              a         <- repLE x
                              negateVar <- lookupOcc negateName >>= repVar
                              negateVar `repApp` a
repE (HsPar x)            = repLE x
repE (SectionL x y)       = do { a <- repLE x; b <- repLE y; repSectionL a b }
repE (SectionR x y)       = do { a <- repLE x; b <- repLE y; repSectionR a b }
repE (HsCase e (MG { mg_alts = ms }))
                          = do { arg <- repLE e
                               ; ms2 <- mapM repMatchTup ms
                               ; core_ms2 <- coreList matchQTyConName ms2
                               ; repCaseE arg core_ms2 }
repE (HsIf _ x y z)         = do
                              a <- repLE x
                              b <- repLE y
                              c <- repLE z
                              repCond a b c
repE (HsMultiIf _ alts)
  = do { (binds, alts') <- liftM unzip $ mapM repLGRHS alts
       ; expr' <- repMultiIf (nonEmptyCoreList alts')
       ; wrapGenSyms (concat binds) expr' }
repE (HsLet bs e)         = do { (ss,ds) <- repBinds bs
                               ; e2 <- addBinds ss (repLE e)
                               ; z <- repLetE ds e2
                               ; wrapGenSyms ss z }

-- FIXME: I haven't got the types here right yet
repE e@(HsDo ctxt sts _)
 | case ctxt of { DoExpr -> True; GhciStmtCtxt -> True; _ -> False }
 = do { (ss,zs) <- repLSts sts;
        e'      <- repDoE (nonEmptyCoreList zs);
        wrapGenSyms ss e' }

 | ListComp <- ctxt
 = do { (ss,zs) <- repLSts sts;
        e'      <- repComp (nonEmptyCoreList zs);
        wrapGenSyms ss e' }

  | otherwise
  = notHandled "mdo, monad comprehension and [: :]" (ppr e)

repE (ExplicitList _ _ es) = do { xs <- repLEs es; repListExp xs }
repE e@(ExplicitPArr _ _) = notHandled "Parallel arrays" (ppr e)
repE e@(ExplicitTuple es boxed)
  | not (all tupArgPresent es) = notHandled "Tuple sections" (ppr e)
  | isBoxed boxed              = do { xs <- repLEs [e | Present e <- es]; repTup xs }
  | otherwise                  = do { xs <- repLEs [e | Present e <- es]; repUnboxedTup xs }

repE (RecordCon c _ flds)
 = do { x <- lookupLOcc c;
        fs <- repFields flds;
        repRecCon x fs }
repE (RecordUpd e flds _ _ _)
 = do { x <- repLE e;
        fs <- repFields flds;
        repRecUpd x fs }

repE (ExprWithTySig e ty) = do { e1 <- repLE e; t1 <- repLTy ty; repSigExp e1 t1 }
repE (ArithSeq _ _ aseq) =
  case aseq of
    From e              -> do { ds1 <- repLE e; repFrom ds1 }
    FromThen e1 e2      -> do
                             ds1 <- repLE e1
                             ds2 <- repLE e2
                             repFromThen ds1 ds2
    FromTo   e1 e2      -> do
                             ds1 <- repLE e1
                             ds2 <- repLE e2
                             repFromTo ds1 ds2
    FromThenTo e1 e2 e3 -> do
                             ds1 <- repLE e1
                             ds2 <- repLE e2
                             ds3 <- repLE e3
                             repFromThenTo ds1 ds2 ds3

repE (HsSpliceE splice)  = repSplice splice
repE e@(PArrSeq {})      = notHandled "Parallel arrays" (ppr e)
repE e@(HsCoreAnn {})    = notHandled "Core annotations" (ppr e)
repE e@(HsSCC {})        = notHandled "Cost centres" (ppr e)
repE e@(HsTickPragma {}) = notHandled "Tick Pragma" (ppr e)
repE e@(HsBracketOut {}) = notHandled "TH brackets" (ppr e)
repE e                   = notHandled "Expression form" (ppr e)

-----------------------------------------------------------------------------
-- Building representations of auxillary structures like Match, Clause, Stmt,

repMatchTup ::  LMatch Name (LHsExpr Name) -> DsM (Core TH.MatchQ)
repMatchTup (L _ (Match [p] _ (GRHSs guards wheres))) =
  do { ss1 <- mkGenSyms (collectPatBinders p)
     ; addBinds ss1 $ do {
     ; p1 <- repLP p
     ; (ss2,ds) <- repBinds wheres
     ; addBinds ss2 $ do {
     ; gs    <- repGuards guards
     ; match <- repMatch p1 gs ds
     ; wrapGenSyms (ss1++ss2) match }}}
repMatchTup _ = panic "repMatchTup: case alt with more than one arg"

repClauseTup ::  LMatch Name (LHsExpr Name) -> DsM (Core TH.ClauseQ)
repClauseTup (L _ (Match ps _ (GRHSs guards wheres))) =
  do { ss1 <- mkGenSyms (collectPatsBinders ps)
     ; addBinds ss1 $ do {
       ps1 <- repLPs ps
     ; (ss2,ds) <- repBinds wheres
     ; addBinds ss2 $ do {
       gs <- repGuards guards
     ; clause <- repClause ps1 gs ds
     ; wrapGenSyms (ss1++ss2) clause }}}

repGuards ::  [LGRHS Name (LHsExpr Name)] ->  DsM (Core TH.BodyQ)
repGuards [L _ (GRHS [] e)]
  = do {a <- repLE e; repNormal a }
repGuards other
  = do { zs <- mapM repLGRHS other
       ; let (xs, ys) = unzip zs
       ; gd <- repGuarded (nonEmptyCoreList ys)
       ; wrapGenSyms (concat xs) gd }

repLGRHS :: LGRHS Name (LHsExpr Name) -> DsM ([GenSymBind], (Core (TH.Q (TH.Guard, TH.Exp))))
repLGRHS (L _ (GRHS [L _ (BodyStmt e1 _ _ _)] e2))
  = do { guarded <- repLNormalGE e1 e2
       ; return ([], guarded) }
repLGRHS (L _ (GRHS ss rhs))
  = do { (gs, ss') <- repLSts ss
       ; rhs' <- addBinds gs $ repLE rhs
       ; guarded <- repPatGE (nonEmptyCoreList ss') rhs'
       ; return (gs, guarded) }

repFields :: HsRecordBinds Name -> DsM (Core [TH.Q TH.FieldExp])
repFields (HsRecFields { rec_flds = flds })
  = repList fieldExpQTyConName rep_fld flds
  where
    rep_fld fld = do { fn <- lookupLOcc (hsRecFieldId fld)
                     ; e  <- repLE (hsRecFieldArg fld)
                     ; repFieldExp fn e }


-----------------------------------------------------------------------------
-- Representing Stmt's is tricky, especially if bound variables
-- shadow each other. Consider:  [| do { x <- f 1; x <- f x; g x } |]
-- First gensym new names for every variable in any of the patterns.
-- both static (x'1 and x'2), and dynamic ((gensym "x") and (gensym "y"))
-- if variables didn't shaddow, the static gensym wouldn't be necessary
-- and we could reuse the original names (x and x).
--
-- do { x'1 <- gensym "x"
--    ; x'2 <- gensym "x"
--    ; doE [ BindSt (pvar x'1) [| f 1 |]
--          , BindSt (pvar x'2) [| f x |]
--          , NoBindSt [| g x |]
--          ]
--    }

-- The strategy is to translate a whole list of do-bindings by building a
-- bigger environment, and a bigger set of meta bindings
-- (like:  x'1 <- gensym "x" ) and then combining these with the translations
-- of the expressions within the Do

-----------------------------------------------------------------------------
-- The helper function repSts computes the translation of each sub expression
-- and a bunch of prefix bindings denoting the dynamic renaming.

repLSts :: [LStmt Name (LHsExpr Name)] -> DsM ([GenSymBind], [Core TH.StmtQ])
repLSts stmts = repSts (map unLoc stmts)

repSts :: [Stmt Name (LHsExpr Name)] -> DsM ([GenSymBind], [Core TH.StmtQ])
repSts (BindStmt p e _ _ : ss) =
   do { e2 <- repLE e
      ; ss1 <- mkGenSyms (collectPatBinders p)
      ; addBinds ss1 $ do {
      ; p1 <- repLP p;
      ; (ss2,zs) <- repSts ss
      ; z <- repBindSt p1 e2
      ; return (ss1++ss2, z : zs) }}
repSts (LetStmt bs : ss) =
   do { (ss1,ds) <- repBinds bs
      ; z <- repLetSt ds
      ; (ss2,zs) <- addBinds ss1 (repSts ss)
      ; return (ss1++ss2, z : zs) }
repSts (BodyStmt e _ _ _ : ss) =
   do { e2 <- repLE e
      ; z <- repNoBindSt e2
      ; (ss2,zs) <- repSts ss
      ; return (ss2, z : zs) }
repSts (ParStmt stmt_blocks _ _ : ss) =
   do { (ss_s, stmt_blocks1) <- mapAndUnzipM rep_stmt_block stmt_blocks
      ; let stmt_blocks2 = nonEmptyCoreList stmt_blocks1
            ss1 = concat ss_s
      ; z <- repParSt stmt_blocks2
      ; (ss2, zs) <- addBinds ss1 (repSts ss)
      ; return (ss1++ss2, z : zs) }
   where
     rep_stmt_block :: ParStmtBlock Name Name -> DsM ([GenSymBind], Core [TH.StmtQ])
     rep_stmt_block (ParStmtBlock stmts _ _) =
       do { (ss1, zs) <- repSts (map unLoc stmts)
          ; zs1 <- coreList stmtQTyConName zs
          ; return (ss1, zs1) }
repSts [LastStmt e _]
  = do { e2 <- repLE e
       ; z <- repNoBindSt e2
       ; return ([], [z]) }
repSts []    = return ([],[])
repSts other = notHandled "Exotic statement" (ppr other)


-----------------------------------------------------------
--                      Bindings
-----------------------------------------------------------

repBinds :: HsLocalBinds Name -> DsM ([GenSymBind], Core [TH.DecQ])
repBinds EmptyLocalBinds
  = do  { core_list <- coreList decQTyConName []
        ; return ([], core_list) }

repBinds b@(HsIPBinds _) = notHandled "Implicit parameters" (ppr b)

repBinds (HsValBinds decs)
 = do   { let { bndrs = hsSigTvBinders decs ++ collectHsValBinders decs }
                -- No need to worrry about detailed scopes within
                -- the binding group, because we are talking Names
                -- here, so we can safely treat it as a mutually
                -- recursive group
                -- For hsSigTvBinders see Note [Scoped type variables in bindings]
        ; ss        <- mkGenSyms bndrs
        ; prs       <- addBinds ss (rep_val_binds decs)
        ; core_list <- coreList decQTyConName
                                (de_loc (sort_by_loc prs))
        ; return (ss, core_list) }

rep_val_binds :: HsValBinds Name -> DsM [(SrcSpan, Core TH.DecQ)]
-- Assumes: all the binders of the binding are alrady in the meta-env
rep_val_binds (ValBindsOut binds sigs)
 = do { core1 <- rep_binds' (unionManyBags (map snd binds))
      ; core2 <- rep_sigs' sigs
      ; return (core1 ++ core2) }
rep_val_binds (ValBindsIn _ _)
 = panic "rep_val_binds: ValBindsIn"

rep_binds :: LHsBinds Name -> DsM [Core TH.DecQ]
rep_binds binds = do { binds_w_locs <- rep_binds' binds
                     ; return (de_loc (sort_by_loc binds_w_locs)) }

rep_binds' :: LHsBinds Name -> DsM [(SrcSpan, Core TH.DecQ)]
rep_binds' binds = mapM rep_bind (bagToList binds)

rep_bind :: LHsBind Name -> DsM (SrcSpan, Core TH.DecQ)
-- Assumes: all the binders of the binding are alrady in the meta-env

-- Note GHC treats declarations of a variable (not a pattern)
-- e.g.  x = g 5 as a Fun MonoBinds. This is indicated by a single match
-- with an empty list of patterns
rep_bind (L loc (FunBind { fun_id = fn,
                           fun_matches = MG { mg_alts = [L _ (Match [] _ (GRHSs guards wheres))] } }))
 = do { (ss,wherecore) <- repBinds wheres
        ; guardcore <- addBinds ss (repGuards guards)
        ; fn'  <- lookupLBinder fn
        ; p    <- repPvar fn'
        ; ans  <- repVal p guardcore wherecore
        ; ans' <- wrapGenSyms ss ans
        ; return (loc, ans') }

rep_bind (L loc (FunBind { fun_id = fn, fun_matches = MG { mg_alts = ms } }))
 =   do { ms1 <- mapM repClauseTup ms
        ; fn' <- lookupLBinder fn
        ; ans <- repFun fn' (nonEmptyCoreList ms1)
        ; return (loc, ans) }

rep_bind (L loc (PatBind { pat_lhs = pat, pat_rhs = GRHSs guards wheres }))
 =   do { patcore <- repLP pat
        ; (ss,wherecore) <- repBinds wheres
        ; guardcore <- addBinds ss (repGuards guards)
        ; ans  <- repVal patcore guardcore wherecore
        ; ans' <- wrapGenSyms ss ans
        ; return (loc, ans') }

rep_bind (L _ (VarBind { var_id = v, var_rhs = e}))
 =   do { v' <- lookupBinder v
        ; e2 <- repLE e
        ; x <- repNormal e2
        ; patcore <- repPvar v'
        ; empty_decls <- coreList decQTyConName []
        ; ans <- repVal patcore x empty_decls
        ; return (srcLocSpan (getSrcLoc v), ans) }

rep_bind (L _ (AbsBinds {}))  = panic "rep_bind: AbsBinds"

-----------------------------------------------------------------------------
-- Since everything in a Bind is mutually recursive we need rename all
-- all the variables simultaneously. For example:
-- [| AndMonoBinds (f x = x + g 2) (g x = f 1 + 2) |] would translate to
-- do { f'1 <- gensym "f"
--    ; g'2 <- gensym "g"
--    ; [ do { x'3 <- gensym "x"; fun f'1 [pvar x'3] [| x + g2 |]},
--        do { x'4 <- gensym "x"; fun g'2 [pvar x'4] [| f 1 + 2 |]}
--      ]}
-- This requires collecting the bindings (f'1 <- gensym "f"), and the
-- environment ( f |-> f'1 ) from each binding, and then unioning them
-- together. As we do this we collect GenSymBinds's which represent the renamed
-- variables bound by the Bindings. In order not to lose track of these
-- representations we build a shadow datatype MB with the same structure as
-- MonoBinds, but which has slots for the representations


-----------------------------------------------------------------------------
-- GHC allows a more general form of lambda abstraction than specified
-- by Haskell 98. In particular it allows guarded lambda's like :
-- (\  x | even x -> 0 | odd x -> 1) at the moment we can't represent this in
-- Haskell Template's Meta.Exp type so we punt if it isn't a simple thing like
-- (\ p1 .. pn -> exp) by causing an error.

repLambda :: LMatch Name (LHsExpr Name) -> DsM (Core TH.ExpQ)
repLambda (L _ (Match ps _ (GRHSs [L _ (GRHS [] e)] EmptyLocalBinds)))
 = do { let bndrs = collectPatsBinders ps ;
      ; ss  <- mkGenSyms bndrs
      ; lam <- addBinds ss (
                do { xs <- repLPs ps; body <- repLE e; repLam xs body })
      ; wrapGenSyms ss lam }

repLambda (L _ m) = notHandled "Guarded labmdas" (pprMatch (LambdaExpr :: HsMatchContext Name) m)


-----------------------------------------------------------------------------
--                      Patterns
-- repP deals with patterns.  It assumes that we have already
-- walked over the pattern(s) once to collect the binders, and
-- have extended the environment.  So every pattern-bound
-- variable should already appear in the environment.

-- Process a list of patterns
repLPs :: [LPat Name] -> DsM (Core [TH.PatQ])
repLPs ps = repList patQTyConName repLP ps

repLP :: LPat Name -> DsM (Core TH.PatQ)
repLP (L _ p) = repP p

repP :: Pat Name -> DsM (Core TH.PatQ)
repP (WildPat _)       = repPwild
repP (LitPat l)        = do { l2 <- repLiteral l; repPlit l2 }
repP (VarPat x)        = do { x' <- lookupBinder x; repPvar x' }
repP (LazyPat p)       = do { p1 <- repLP p; repPtilde p1 }
repP (BangPat p)       = do { p1 <- repLP p; repPbang p1 }
repP (AsPat x p)       = do { x' <- lookupLBinder x; p1 <- repLP p; repPaspat x' p1 }
repP (ParPat p)        = repLP p
repP (ListPat ps _ Nothing)    = do { qs <- repLPs ps; repPlist qs }
repP (ListPat ps ty1 (Just (_,e))) = do { p <- repP (ListPat ps ty1 Nothing); e' <- repE e; repPview e' p}
repP (TuplePat ps boxed _)
  | isBoxed boxed       = do { qs <- repLPs ps; repPtup qs }
  | otherwise           = do { qs <- repLPs ps; repPunboxedTup qs }
repP (ConPatIn dc details)
 = do { con_str <- lookupLOcc dc
      ; case details of
         PrefixCon ps -> do { qs <- repLPs ps; repPcon con_str qs }
         RecCon rec   -> do { fps <- repList fieldPatQTyConName rep_fld (rec_flds rec)
                            ; repPrec con_str fps }
         InfixCon p1 p2 -> do { p1' <- repLP p1;
                                p2' <- repLP p2;
                                repPinfix p1' con_str p2' }
   }
 where
   rep_fld fld = do { MkC v <- lookupLOcc (hsRecFieldId fld)
                    ; MkC p <- repLP (hsRecFieldArg fld)
                    ; rep2 fieldPatName [v,p] }

repP (NPat l Nothing _)  = do { a <- repOverloadedLiteral l; repPlit a }
repP (ViewPat e p _) = do { e' <- repLE e; p' <- repLP p; repPview e' p' }
repP p@(NPat _ (Just _) _) = notHandled "Negative overloaded patterns" (ppr p)
repP p@(SigPatIn {})  = notHandled "Type signatures in patterns" (ppr p)
        -- The problem is to do with scoped type variables.
        -- To implement them, we have to implement the scoping rules
        -- here in DsMeta, and I don't want to do that today!
        --       do { p' <- repLP p; t' <- repLTy t; repPsig p' t' }
        --      repPsig :: Core TH.PatQ -> Core TH.TypeQ -> DsM (Core TH.PatQ)
        --      repPsig (MkC p) (MkC t) = rep2 sigPName [p, t]

repP other = notHandled "Exotic pattern" (ppr other)

----------------------------------------------------------
-- Declaration ordering helpers

sort_by_loc :: [(SrcSpan, a)] -> [(SrcSpan, a)]
sort_by_loc xs = sortBy comp xs
    where comp x y = compare (fst x) (fst y)

de_loc :: [(a, b)] -> [b]
de_loc = map snd

----------------------------------------------------------
--      The meta-environment

-- A name/identifier association for fresh names of locally bound entities
type GenSymBind = (Name, Id)    -- Gensym the string and bind it to the Id
                                -- I.e.         (x, x_id) means
                                --      let x_id = gensym "x" in ...

-- Generate a fresh name for a locally bound entity

mkGenSyms :: [Name] -> DsM [GenSymBind]
-- We can use the existing name.  For example:
--      [| \x_77 -> x_77 + x_77 |]
-- desugars to
--      do { x_77 <- genSym "x"; .... }
-- We use the same x_77 in the desugared program, but with the type Bndr
-- instead of Int
--
-- We do make it an Internal name, though (hence localiseName)
--
-- Nevertheless, it's monadic because we have to generate nameTy
mkGenSyms ns = do { var_ty <- lookupType nameTyConName
                  ; return [(nm, mkLocalId (localiseName nm) var_ty) | nm <- ns] }


addBinds :: [GenSymBind] -> DsM a -> DsM a
-- Add a list of fresh names for locally bound entities to the
-- meta environment (which is part of the state carried around
-- by the desugarer monad)
addBinds bs m = dsExtendMetaEnv (mkNameEnv [(n,Bound id) | (n,id) <- bs]) m

dupBinder :: (Name, Name) -> DsM (Name, DsMetaVal)
dupBinder (new, old)
  = do { mb_val <- dsLookupMetaEnv old
       ; case mb_val of
           Just val -> return (new, val)
           Nothing  -> pprPanic "dupBinder" (ppr old) }

-- Look up a locally bound name
--
lookupLBinder :: Located Name -> DsM (Core TH.Name)
lookupLBinder (L _ n) = lookupBinder n

lookupBinder :: Name -> DsM (Core TH.Name)
lookupBinder = lookupOcc
  -- Binders are brought into scope before the pattern or what-not is
  -- desugared.  Moreover, in instance declaration the binder of a method
  -- will be the selector Id and hence a global; so we need the
  -- globalVar case of lookupOcc

-- Look up a name that is either locally bound or a global name
--
--  * If it is a global name, generate the "original name" representation (ie,
--   the <module>:<name> form) for the associated entity
--
lookupLOcc :: Located Name -> DsM (Core TH.Name)
-- Lookup an occurrence; it can't be a splice.
-- Use the in-scope bindings if they exist
lookupLOcc (L _ n) = lookupOcc n

lookupOcc :: Name -> DsM (Core TH.Name)
lookupOcc n
  = do {  mb_val <- dsLookupMetaEnv n ;
          case mb_val of
                Nothing         -> globalVar n
                Just (Bound x)  -> return (coreVar x)
                Just (Splice _) -> pprPanic "repE:lookupOcc" (ppr n)
    }

globalVar :: Name -> DsM (Core TH.Name)
-- Not bound by the meta-env
-- Could be top-level; or could be local
--      f x = $(g [| x |])
-- Here the x will be local
globalVar name
  | isExternalName name
  = do  { MkC mod <- coreStringLit name_mod
        ; MkC pkg <- coreStringLit name_pkg
        ; MkC occ <- occNameLit name
        ; rep2 mk_varg [pkg,mod,occ] }
  | otherwise
  = do  { MkC occ <- occNameLit name
        ; MkC uni <- coreIntLit (getKey (getUnique name))
        ; rep2 mkNameLName [occ,uni] }
  where
      mod = ASSERT( isExternalName name) nameModule name
      name_mod = moduleNameString (moduleName mod)
      name_pkg = packageIdString (modulePackageId mod)
      name_occ = nameOccName name
      mk_varg | OccName.isDataOcc name_occ = mkNameG_dName
              | OccName.isVarOcc  name_occ = mkNameG_vName
              | OccName.isTcOcc   name_occ = mkNameG_tcName
              | otherwise                  = pprPanic "DsMeta.globalVar" (ppr name)

lookupType :: Name      -- Name of type constructor (e.g. TH.ExpQ)
           -> DsM Type  -- The type
lookupType tc_name = do { tc <- dsLookupTyCon tc_name ;
                          return (mkTyConApp tc []) }

wrapGenSyms :: [GenSymBind]
            -> Core (TH.Q a) -> DsM (Core (TH.Q a))
-- wrapGenSyms [(nm1,id1), (nm2,id2)] y
--      --> bindQ (gensym nm1) (\ id1 ->
--          bindQ (gensym nm2 (\ id2 ->
--          y))

wrapGenSyms binds body@(MkC b)
  = do  { var_ty <- lookupType nameTyConName
        ; go var_ty binds }
  where
    [elt_ty] = tcTyConAppArgs (exprType b)
        -- b :: Q a, so we can get the type 'a' by looking at the
        -- argument type. NB: this relies on Q being a data/newtype,
        -- not a type synonym

    go _ [] = return body
    go var_ty ((name,id) : binds)
      = do { MkC body'  <- go var_ty binds
           ; lit_str    <- occNameLit name
           ; gensym_app <- repGensym lit_str
           ; repBindQ var_ty elt_ty
                      gensym_app (MkC (Lam id body')) }

occNameLit :: Name -> DsM (Core String)
occNameLit n = coreStringLit (occNameString (nameOccName n))


-- %*********************************************************************
-- %*                                                                   *
--              Constructing code
-- %*                                                                   *
-- %*********************************************************************

-----------------------------------------------------------------------------
-- PHANTOM TYPES for consistency. In order to make sure we do this correct
-- we invent a new datatype which uses phantom types.

newtype Core a = MkC CoreExpr
unC :: Core a -> CoreExpr
unC (MkC x) = x

rep2 :: Name -> [ CoreExpr ] -> DsM (Core a)
rep2 n xs = do { id <- dsLookupGlobalId n
               ; return (MkC (foldl App (Var id) xs)) }

dataCon' :: Name -> [CoreExpr] -> DsM (Core a)
dataCon' n args = do { id <- dsLookupDataCon n
                     ; return $ MkC $ mkConApp id args }

dataCon :: Name -> DsM (Core a)
dataCon n = dataCon' n []

-- Then we make "repConstructors" which use the phantom types for each of the
-- smart constructors of the Meta.Meta datatypes.


-- %*********************************************************************
-- %*                                                                   *
--              The 'smart constructors'
-- %*                                                                   *
-- %*********************************************************************

--------------- Patterns -----------------
repPlit   :: Core TH.Lit -> DsM (Core TH.PatQ)
repPlit (MkC l) = rep2 litPName [l]

repPvar :: Core TH.Name -> DsM (Core TH.PatQ)
repPvar (MkC s) = rep2 varPName [s]

repPtup :: Core [TH.PatQ] -> DsM (Core TH.PatQ)
repPtup (MkC ps) = rep2 tupPName [ps]

repPunboxedTup :: Core [TH.PatQ] -> DsM (Core TH.PatQ)
repPunboxedTup (MkC ps) = rep2 unboxedTupPName [ps]

repPcon   :: Core TH.Name -> Core [TH.PatQ] -> DsM (Core TH.PatQ)
repPcon (MkC s) (MkC ps) = rep2 conPName [s, ps]

repPrec   :: Core TH.Name -> Core [(TH.Name,TH.PatQ)] -> DsM (Core TH.PatQ)
repPrec (MkC c) (MkC rps) = rep2 recPName [c,rps]

repPinfix :: Core TH.PatQ -> Core TH.Name -> Core TH.PatQ -> DsM (Core TH.PatQ)
repPinfix (MkC p1) (MkC n) (MkC p2) = rep2 infixPName [p1, n, p2]

repPtilde :: Core TH.PatQ -> DsM (Core TH.PatQ)
repPtilde (MkC p) = rep2 tildePName [p]

repPbang :: Core TH.PatQ -> DsM (Core TH.PatQ)
repPbang (MkC p) = rep2 bangPName [p]

repPaspat :: Core TH.Name -> Core TH.PatQ -> DsM (Core TH.PatQ)
repPaspat (MkC s) (MkC p) = rep2 asPName [s, p]

repPwild  :: DsM (Core TH.PatQ)
repPwild = rep2 wildPName []

repPlist :: Core [TH.PatQ] -> DsM (Core TH.PatQ)
repPlist (MkC ps) = rep2 listPName [ps]

repPview :: Core TH.ExpQ -> Core TH.PatQ -> DsM (Core TH.PatQ)
repPview (MkC e) (MkC p) = rep2 viewPName [e,p]

--------------- Expressions -----------------
repVarOrCon :: Name -> Core TH.Name -> DsM (Core TH.ExpQ)
repVarOrCon vc str | isDataOcc (nameOccName vc) = repCon str
                   | otherwise                  = repVar str

repVar :: Core TH.Name -> DsM (Core TH.ExpQ)
repVar (MkC s) = rep2 varEName [s]

repCon :: Core TH.Name -> DsM (Core TH.ExpQ)
repCon (MkC s) = rep2 conEName [s]

repLit :: Core TH.Lit -> DsM (Core TH.ExpQ)
repLit (MkC c) = rep2 litEName [c]

repApp :: Core TH.ExpQ -> Core TH.ExpQ -> DsM (Core TH.ExpQ)
repApp (MkC x) (MkC y) = rep2 appEName [x,y]

repLam :: Core [TH.PatQ] -> Core TH.ExpQ -> DsM (Core TH.ExpQ)
repLam (MkC ps) (MkC e) = rep2 lamEName [ps, e]

repLamCase :: Core [TH.MatchQ] -> DsM (Core TH.ExpQ)
repLamCase (MkC ms) = rep2 lamCaseEName [ms]

repTup :: Core [TH.ExpQ] -> DsM (Core TH.ExpQ)
repTup (MkC es) = rep2 tupEName [es]

repUnboxedTup :: Core [TH.ExpQ] -> DsM (Core TH.ExpQ)
repUnboxedTup (MkC es) = rep2 unboxedTupEName [es]

repCond :: Core TH.ExpQ -> Core TH.ExpQ -> Core TH.ExpQ -> DsM (Core TH.ExpQ)
repCond (MkC x) (MkC y) (MkC z) = rep2 condEName [x,y,z]

repMultiIf :: Core [TH.Q (TH.Guard, TH.Exp)] -> DsM (Core TH.ExpQ)
repMultiIf (MkC alts) = rep2 multiIfEName [alts]

repLetE :: Core [TH.DecQ] -> Core TH.ExpQ -> DsM (Core TH.ExpQ)
repLetE (MkC ds) (MkC e) = rep2 letEName [ds, e]

repCaseE :: Core TH.ExpQ -> Core [TH.MatchQ] -> DsM( Core TH.ExpQ)
repCaseE (MkC e) (MkC ms) = rep2 caseEName [e, ms]

repDoE :: Core [TH.StmtQ] -> DsM (Core TH.ExpQ)
repDoE (MkC ss) = rep2 doEName [ss]

repComp :: Core [TH.StmtQ] -> DsM (Core TH.ExpQ)
repComp (MkC ss) = rep2 compEName [ss]

repListExp :: Core [TH.ExpQ] -> DsM (Core TH.ExpQ)
repListExp (MkC es) = rep2 listEName [es]

repSigExp :: Core TH.ExpQ -> Core TH.TypeQ -> DsM (Core TH.ExpQ)
repSigExp (MkC e) (MkC t) = rep2 sigEName [e,t]

repRecCon :: Core TH.Name -> Core [TH.Q TH.FieldExp]-> DsM (Core TH.ExpQ)
repRecCon (MkC c) (MkC fs) = rep2 recConEName [c,fs]

repRecUpd :: Core TH.ExpQ -> Core [TH.Q TH.FieldExp] -> DsM (Core TH.ExpQ)
repRecUpd (MkC e) (MkC fs) = rep2 recUpdEName [e,fs]

repFieldExp :: Core TH.Name -> Core TH.ExpQ -> DsM (Core (TH.Q TH.FieldExp))
repFieldExp (MkC n) (MkC x) = rep2 fieldExpName [n,x]

repInfixApp :: Core TH.ExpQ -> Core TH.ExpQ -> Core TH.ExpQ -> DsM (Core TH.ExpQ)
repInfixApp (MkC x) (MkC y) (MkC z) = rep2 infixAppName [x,y,z]

repSectionL :: Core TH.ExpQ -> Core TH.ExpQ -> DsM (Core TH.ExpQ)
repSectionL (MkC x) (MkC y) = rep2 sectionLName [x,y]

repSectionR :: Core TH.ExpQ -> Core TH.ExpQ -> DsM (Core TH.ExpQ)
repSectionR (MkC x) (MkC y) = rep2 sectionRName [x,y]

------------ Right hand sides (guarded expressions) ----
repGuarded :: Core [TH.Q (TH.Guard, TH.Exp)] -> DsM (Core TH.BodyQ)
repGuarded (MkC pairs) = rep2 guardedBName [pairs]

repNormal :: Core TH.ExpQ -> DsM (Core TH.BodyQ)
repNormal (MkC e) = rep2 normalBName [e]

------------ Guards ----
repLNormalGE :: LHsExpr Name -> LHsExpr Name -> DsM (Core (TH.Q (TH.Guard, TH.Exp)))
repLNormalGE g e = do g' <- repLE g
                      e' <- repLE e
                      repNormalGE g' e'

repNormalGE :: Core TH.ExpQ -> Core TH.ExpQ -> DsM (Core (TH.Q (TH.Guard, TH.Exp)))
repNormalGE (MkC g) (MkC e) = rep2 normalGEName [g, e]

repPatGE :: Core [TH.StmtQ] -> Core TH.ExpQ -> DsM (Core (TH.Q (TH.Guard, TH.Exp)))
repPatGE (MkC ss) (MkC e) = rep2 patGEName [ss, e]

------------- Stmts -------------------
repBindSt :: Core TH.PatQ -> Core TH.ExpQ -> DsM (Core TH.StmtQ)
repBindSt (MkC p) (MkC e) = rep2 bindSName [p,e]

repLetSt :: Core [TH.DecQ] -> DsM (Core TH.StmtQ)
repLetSt (MkC ds) = rep2 letSName [ds]

repNoBindSt :: Core TH.ExpQ -> DsM (Core TH.StmtQ)
repNoBindSt (MkC e) = rep2 noBindSName [e]

repParSt :: Core [[TH.StmtQ]] -> DsM (Core TH.StmtQ)
repParSt (MkC sss) = rep2 parSName [sss]

-------------- Range (Arithmetic sequences) -----------
repFrom :: Core TH.ExpQ -> DsM (Core TH.ExpQ)
repFrom (MkC x) = rep2 fromEName [x]

repFromThen :: Core TH.ExpQ -> Core TH.ExpQ -> DsM (Core TH.ExpQ)
repFromThen (MkC x) (MkC y) = rep2 fromThenEName [x,y]

repFromTo :: Core TH.ExpQ -> Core TH.ExpQ -> DsM (Core TH.ExpQ)
repFromTo (MkC x) (MkC y) = rep2 fromToEName [x,y]

repFromThenTo :: Core TH.ExpQ -> Core TH.ExpQ -> Core TH.ExpQ -> DsM (Core TH.ExpQ)
repFromThenTo (MkC x) (MkC y) (MkC z) = rep2 fromThenToEName [x,y,z]

------------ Match and Clause Tuples -----------
repMatch :: Core TH.PatQ -> Core TH.BodyQ -> Core [TH.DecQ] -> DsM (Core TH.MatchQ)
repMatch (MkC p) (MkC bod) (MkC ds) = rep2 matchName [p, bod, ds]

repClause :: Core [TH.PatQ] -> Core TH.BodyQ -> Core [TH.DecQ] -> DsM (Core TH.ClauseQ)
repClause (MkC ps) (MkC bod) (MkC ds) = rep2 clauseName [ps, bod, ds]

-------------- Dec -----------------------------
repVal :: Core TH.PatQ -> Core TH.BodyQ -> Core [TH.DecQ] -> DsM (Core TH.DecQ)
repVal (MkC p) (MkC b) (MkC ds) = rep2 valDName [p, b, ds]

repFun :: Core TH.Name -> Core [TH.ClauseQ] -> DsM (Core TH.DecQ)
repFun (MkC nm) (MkC b) = rep2 funDName [nm, b]

repData :: Core TH.CxtQ -> Core TH.Name -> Core [TH.TyVarBndr]
        -> Maybe (Core [TH.TypeQ])
        -> Core [TH.ConQ] -> Core [TH.Name] -> DsM (Core TH.DecQ)
repData (MkC cxt) (MkC nm) (MkC tvs) Nothing (MkC cons) (MkC derivs)
  = rep2 dataDName [cxt, nm, tvs, cons, derivs]
repData (MkC cxt) (MkC nm) (MkC _) (Just (MkC tys)) (MkC cons) (MkC derivs)
  = rep2 dataInstDName [cxt, nm, tys, cons, derivs]

repNewtype :: Core TH.CxtQ -> Core TH.Name -> Core [TH.TyVarBndr]
           -> Maybe (Core [TH.TypeQ])
           -> Core TH.ConQ -> Core [TH.Name] -> DsM (Core TH.DecQ)
repNewtype (MkC cxt) (MkC nm) (MkC tvs) Nothing (MkC con) (MkC derivs)
  = rep2 newtypeDName [cxt, nm, tvs, con, derivs]
repNewtype (MkC cxt) (MkC nm) (MkC _) (Just (MkC tys)) (MkC con) (MkC derivs)
  = rep2 newtypeInstDName [cxt, nm, tys, con, derivs]

repTySyn :: Core TH.Name -> Core [TH.TyVarBndr]
         -> Core TH.TypeQ -> DsM (Core TH.DecQ)
repTySyn (MkC nm) (MkC tvs) (MkC rhs)
  = rep2 tySynDName [nm, tvs, rhs]

repInst :: Core TH.CxtQ -> Core TH.TypeQ -> Core [TH.DecQ] -> DsM (Core TH.DecQ)
repInst (MkC cxt) (MkC ty) (MkC ds) = rep2 instanceDName [cxt, ty, ds]

repClass :: Core TH.CxtQ -> Core TH.Name -> Core [TH.TyVarBndr]
         -> Core [TH.FunDep] -> Core [TH.DecQ]
         -> DsM (Core TH.DecQ)
repClass (MkC cxt) (MkC cls) (MkC tvs) (MkC fds) (MkC ds)
  = rep2 classDName [cxt, cls, tvs, fds, ds]

repPragInl :: Core TH.Name -> Core TH.Inline -> Core TH.RuleMatch
           -> Core TH.Phases -> DsM (Core TH.DecQ)
repPragInl (MkC nm) (MkC inline) (MkC rm) (MkC phases)
  = rep2 pragInlDName [nm, inline, rm, phases]

repPragSpec :: Core TH.Name -> Core TH.TypeQ -> Core TH.Phases
            -> DsM (Core TH.DecQ)
repPragSpec (MkC nm) (MkC ty) (MkC phases)
  = rep2 pragSpecDName [nm, ty, phases]

repPragSpecInl :: Core TH.Name -> Core TH.TypeQ -> Core TH.Inline
               -> Core TH.Phases -> DsM (Core TH.DecQ)
repPragSpecInl (MkC nm) (MkC ty) (MkC inline) (MkC phases)
  = rep2 pragSpecInlDName [nm, ty, inline, phases]

repPragSpecInst :: Core TH.TypeQ -> DsM (Core TH.DecQ)
repPragSpecInst (MkC ty) = rep2 pragSpecInstDName [ty]

repPragRule :: Core String -> Core [TH.RuleBndrQ] -> Core TH.ExpQ
            -> Core TH.ExpQ -> Core TH.Phases -> DsM (Core TH.DecQ)
repPragRule (MkC nm) (MkC bndrs) (MkC lhs) (MkC rhs) (MkC phases)
  = rep2 pragRuleDName [nm, bndrs, lhs, rhs, phases]

repFamilyNoKind :: Core TH.FamFlavour -> Core TH.Name -> Core [TH.TyVarBndr]
                -> DsM (Core TH.DecQ)
repFamilyNoKind (MkC flav) (MkC nm) (MkC tvs)
    = rep2 familyNoKindDName [flav, nm, tvs]

repFamilyKind :: Core TH.FamFlavour -> Core TH.Name -> Core [TH.TyVarBndr]
              -> Core TH.Kind
              -> DsM (Core TH.DecQ)
repFamilyKind (MkC flav) (MkC nm) (MkC tvs) (MkC ki)
    = rep2 familyKindDName [flav, nm, tvs, ki]

repTySynInst :: Core TH.Name -> Core TH.TySynEqnQ -> DsM (Core TH.DecQ)
repTySynInst (MkC nm) (MkC eqn)
    = rep2 tySynInstDName [nm, eqn]

repClosedFamilyNoKind :: Core TH.Name
                      -> Core [TH.TyVarBndr]
                      -> Core [TH.TySynEqnQ]
                      -> DsM (Core TH.DecQ)
repClosedFamilyNoKind (MkC nm) (MkC tvs) (MkC eqns)
    = rep2 closedTypeFamilyNoKindDName [nm, tvs, eqns]

repClosedFamilyKind :: Core TH.Name
                    -> Core [TH.TyVarBndr]
                    -> Core TH.Kind
                    -> Core [TH.TySynEqnQ]
                    -> DsM (Core TH.DecQ)
repClosedFamilyKind (MkC nm) (MkC tvs) (MkC ki) (MkC eqns)
    = rep2 closedTypeFamilyKindDName [nm, tvs, ki, eqns]

repTySynEqn :: Core [TH.TypeQ] -> Core TH.TypeQ -> DsM (Core TH.TySynEqnQ)
repTySynEqn (MkC lhs) (MkC rhs)
  = rep2 tySynEqnName [lhs, rhs]

repFunDep :: Core [TH.Name] -> Core [TH.Name] -> DsM (Core TH.FunDep)
repFunDep (MkC xs) (MkC ys) = rep2 funDepName [xs, ys]

repProto :: Core TH.Name -> Core TH.TypeQ -> DsM (Core TH.DecQ)
repProto (MkC s) (MkC ty) = rep2 sigDName [s, ty]

repCtxt :: Core [TH.PredQ] -> DsM (Core TH.CxtQ)
repCtxt (MkC tys) = rep2 cxtName [tys]

repClassP :: Core TH.Name -> Core [TH.TypeQ] -> DsM (Core TH.PredQ)
repClassP (MkC cla) (MkC tys) = rep2 classPName [cla, tys]

repEqualP :: Core TH.TypeQ -> Core TH.TypeQ -> DsM (Core TH.PredQ)
repEqualP (MkC ty1) (MkC ty2) = rep2 equalPName [ty1, ty2]

repConstr :: Core TH.Name -> HsConDeclDetails Name
          -> DsM (Core TH.ConQ)
repConstr con (PrefixCon ps)
    = do arg_tys  <- repList strictTypeQTyConName repBangTy ps
         rep2 normalCName [unC con, unC arg_tys]
repConstr con (RecCon ips)
    = do { arg_vtys <- repList varStrictTypeQTyConName rep_ip ips
         ; rep2 recCName [unC con, unC arg_vtys] }
    where
      rep_ip ip = do { MkC v  <- lookupLOcc (cd_fld_name ip)
                     ; MkC ty <- repBangTy  (cd_fld_type ip)
                     ; rep2 varStrictTypeName [v,ty] }

repConstr con (InfixCon st1 st2)
    = do arg1 <- repBangTy st1
         arg2 <- repBangTy st2
         rep2 infixCName [unC arg1, unC con, unC arg2]

------------ Types -------------------

repTForall :: Core [TH.TyVarBndr] -> Core TH.CxtQ -> Core TH.TypeQ
           -> DsM (Core TH.TypeQ)
repTForall (MkC tvars) (MkC ctxt) (MkC ty)
    = rep2 forallTName [tvars, ctxt, ty]

repTvar :: Core TH.Name -> DsM (Core TH.TypeQ)
repTvar (MkC s) = rep2 varTName [s]

repTapp :: Core TH.TypeQ -> Core TH.TypeQ -> DsM (Core TH.TypeQ)
repTapp (MkC t1) (MkC t2) = rep2 appTName [t1, t2]

repTapps :: Core TH.TypeQ -> [Core TH.TypeQ] -> DsM (Core TH.TypeQ)
repTapps f []     = return f
repTapps f (t:ts) = do { f1 <- repTapp f t; repTapps f1 ts }

repTSig :: Core TH.TypeQ -> Core TH.Kind -> DsM (Core TH.TypeQ)
repTSig (MkC ty) (MkC ki) = rep2 sigTName [ty, ki]

repTPromotedList :: [Core TH.TypeQ] -> DsM (Core TH.TypeQ)
repTPromotedList []     = repPromotedNilTyCon
repTPromotedList (t:ts) = do  { tcon <- repPromotedConsTyCon
                              ; f <- repTapp tcon t
                              ; t' <- repTPromotedList ts
                              ; repTapp f t'
                              }

repTLit :: Core TH.TyLitQ -> DsM (Core TH.TypeQ)
repTLit (MkC lit) = rep2 litTName [lit]

--------- Type constructors --------------

repNamedTyCon :: Core TH.Name -> DsM (Core TH.TypeQ)
repNamedTyCon (MkC s) = rep2 conTName [s]

repTupleTyCon :: Int -> DsM (Core TH.TypeQ)
-- Note: not Core Int; it's easier to be direct here
repTupleTyCon i = do dflags <- getDynFlags
                     rep2 tupleTName [mkIntExprInt dflags i]

repUnboxedTupleTyCon :: Int -> DsM (Core TH.TypeQ)
-- Note: not Core Int; it's easier to be direct here
repUnboxedTupleTyCon i = do dflags <- getDynFlags
                            rep2 unboxedTupleTName [mkIntExprInt dflags i]

repArrowTyCon :: DsM (Core TH.TypeQ)
repArrowTyCon = rep2 arrowTName []

repListTyCon :: DsM (Core TH.TypeQ)
repListTyCon = rep2 listTName []

repPromotedTyCon :: Core TH.Name -> DsM (Core TH.TypeQ)
repPromotedTyCon (MkC s) = rep2 promotedTName [s]

repPromotedTupleTyCon :: Int -> DsM (Core TH.TypeQ)
repPromotedTupleTyCon i = do dflags <- getDynFlags
                             rep2 promotedTupleTName [mkIntExprInt dflags i]

repPromotedNilTyCon :: DsM (Core TH.TypeQ)
repPromotedNilTyCon = rep2 promotedNilTName []

repPromotedConsTyCon :: DsM (Core TH.TypeQ)
repPromotedConsTyCon = rep2 promotedConsTName []

------------ Kinds -------------------

repPlainTV :: Core TH.Name -> DsM (Core TH.TyVarBndr)
repPlainTV (MkC nm) = rep2 plainTVName [nm]

repKindedTV :: Core TH.Name -> Core TH.Kind -> DsM (Core TH.TyVarBndr)
repKindedTV (MkC nm) (MkC ki) = rep2 kindedTVName [nm, ki]

repRoledTV :: Core TH.Name -> Core TH.Role -> DsM (Core TH.TyVarBndr)
repRoledTV (MkC nm) (MkC r) = rep2 roledTVName [nm, r]

repKindedRoledTV :: Core TH.Name -> Core TH.Kind -> Core TH.Role
                 -> DsM (Core TH.TyVarBndr)
repKindedRoledTV (MkC nm) (MkC k) (MkC r) = rep2 kindedRoledTVName [nm, k, r]

repKVar :: Core TH.Name -> DsM (Core TH.Kind)
repKVar (MkC s) = rep2 varKName [s]

repKCon :: Core TH.Name -> DsM (Core TH.Kind)
repKCon (MkC s) = rep2 conKName [s]

repKTuple :: Int -> DsM (Core TH.Kind)
repKTuple i = do dflags <- getDynFlags
                 rep2 tupleKName [mkIntExprInt dflags i]

repKArrow :: DsM (Core TH.Kind)
repKArrow = rep2 arrowKName []

repKList :: DsM (Core TH.Kind)
repKList = rep2 listKName []

repKApp :: Core TH.Kind -> Core TH.Kind -> DsM (Core TH.Kind)
repKApp (MkC k1) (MkC k2) = rep2 appKName [k1, k2]

repKApps :: Core TH.Kind -> [Core TH.Kind] -> DsM (Core TH.Kind)
repKApps f []     = return f
repKApps f (k:ks) = do { f' <- repKApp f k; repKApps f' ks }

repKStar :: DsM (Core TH.Kind)
repKStar = rep2 starKName []

repKConstraint :: DsM (Core TH.Kind)
repKConstraint = rep2 constraintKName []

----------------------------------------------------------
--              Literals

repLiteral :: HsLit -> DsM (Core TH.Lit)
repLiteral lit
  = do lit' <- case lit of
                   HsIntPrim i    -> mk_integer i
                   HsWordPrim w   -> mk_integer w
                   HsInt i        -> mk_integer i
                   HsFloatPrim r  -> mk_rational r
                   HsDoublePrim r -> mk_rational r
                   _ -> return lit
       lit_expr <- dsLit lit'
       case mb_lit_name of
          Just lit_name -> rep2 lit_name [lit_expr]
          Nothing -> notHandled "Exotic literal" (ppr lit)
  where
    mb_lit_name = case lit of
                 HsInteger _ _  -> Just integerLName
                 HsInt     _    -> Just integerLName
                 HsIntPrim _    -> Just intPrimLName
                 HsWordPrim _   -> Just wordPrimLName
                 HsFloatPrim _  -> Just floatPrimLName
                 HsDoublePrim _ -> Just doublePrimLName
                 HsChar _       -> Just charLName
                 HsString _     -> Just stringLName
                 HsRat _ _      -> Just rationalLName
                 _              -> Nothing

mk_integer :: Integer -> DsM HsLit
mk_integer  i = do integer_ty <- lookupType integerTyConName
                   return $ HsInteger i integer_ty
mk_rational :: FractionalLit -> DsM HsLit
mk_rational r = do rat_ty <- lookupType rationalTyConName
                   return $ HsRat r rat_ty
mk_string :: FastString -> DsM HsLit
mk_string s = return $ HsString s

repOverloadedLiteral :: HsOverLit Name -> DsM (Core TH.Lit)
repOverloadedLiteral (OverLit { ol_val = val})
  = do { lit <- mk_lit val; repLiteral lit }
        -- The type Rational will be in the environment, because
        -- the smart constructor 'TH.Syntax.rationalL' uses it in its type,
        -- and rationalL is sucked in when any TH stuff is used

mk_lit :: OverLitVal -> DsM HsLit
mk_lit (HsIntegral i)   = mk_integer  i
mk_lit (HsFractional f) = mk_rational f
mk_lit (HsIsString s)   = mk_string   s

--------------- Miscellaneous -------------------

repGensym :: Core String -> DsM (Core (TH.Q TH.Name))
repGensym (MkC lit_str) = rep2 newNameName [lit_str]

repBindQ :: Type -> Type        -- a and b
         -> Core (TH.Q a) -> Core (a -> TH.Q b) -> DsM (Core (TH.Q b))
repBindQ ty_a ty_b (MkC x) (MkC y)
  = rep2 bindQName [Type ty_a, Type ty_b, x, y]

repSequenceQ :: Type -> Core [TH.Q a] -> DsM (Core (TH.Q [a]))
repSequenceQ ty_a (MkC list)
  = rep2 sequenceQName [Type ty_a, list]

------------ Lists and Tuples -------------------
-- turn a list of patterns into a single pattern matching a list

repList :: Name -> (a  -> DsM (Core b))
                -> [a] -> DsM (Core [b])
repList tc_name f args
  = do { args1 <- mapM f args
       ; coreList tc_name args1 }

coreList :: Name        -- Of the TyCon of the element type
         -> [Core a] -> DsM (Core [a])
coreList tc_name es
  = do { elt_ty <- lookupType tc_name; return (coreList' elt_ty es) }

coreList' :: Type       -- The element type
          -> [Core a] -> Core [a]
coreList' elt_ty es = MkC (mkListExpr elt_ty (map unC es ))

nonEmptyCoreList :: [Core a] -> Core [a]
  -- The list must be non-empty so we can get the element type
  -- Otherwise use coreList
nonEmptyCoreList []           = panic "coreList: empty argument"
nonEmptyCoreList xs@(MkC x:_) = MkC (mkListExpr (exprType x) (map unC xs))

coreStringLit :: String -> DsM (Core String)
coreStringLit s = do { z <- mkStringExpr s; return(MkC z) }

------------ Literals & Variables -------------------

coreIntLit :: Int -> DsM (Core Int)
coreIntLit i = do dflags <- getDynFlags
                  return (MkC (mkIntExprInt dflags i))

coreVar :: Id -> Core TH.Name   -- The Id has type Name
coreVar id = MkC (Var id)

----------------- Failure -----------------------
notHandled :: String -> SDoc -> DsM a
notHandled what doc = failWithDs msg
  where
    msg = hang (text what <+> ptext (sLit "not (yet) handled by Template Haskell"))
             2 doc


-- %************************************************************************
-- %*                                                                   *
--              The known-key names for Template Haskell
-- %*                                                                   *
-- %************************************************************************

-- To add a name, do three things
--
--  1) Allocate a key
--  2) Make a "Name"
--  3) Add the name to knownKeyNames

templateHaskellNames :: [Name]
-- The names that are implicitly mentioned by ``bracket''
-- Should stay in sync with the import list of DsMeta

templateHaskellNames = [
    returnQName, bindQName, sequenceQName, newNameName, liftName,
    mkNameName, mkNameG_vName, mkNameG_dName, mkNameG_tcName, mkNameLName,
    liftStringName,

    -- Lit
    charLName, stringLName, integerLName, intPrimLName, wordPrimLName,
    floatPrimLName, doublePrimLName, rationalLName,
    -- Pat
    litPName, varPName, tupPName, unboxedTupPName,
    conPName, tildePName, bangPName, infixPName,
    asPName, wildPName, recPName, listPName, sigPName, viewPName,
    -- FieldPat
    fieldPatName,
    -- Match
    matchName,
    -- Clause
    clauseName,
    -- Exp
    varEName, conEName, litEName, appEName, infixEName,
    infixAppName, sectionLName, sectionRName, lamEName, lamCaseEName,
    tupEName, unboxedTupEName,
    condEName, multiIfEName, letEName, caseEName, doEName, compEName,
    fromEName, fromThenEName, fromToEName, fromThenToEName,
    listEName, sigEName, recConEName, recUpdEName,
    -- FieldExp
    fieldExpName,
    -- Body
    guardedBName, normalBName,
    -- Guard
    normalGEName, patGEName,
    -- Stmt
    bindSName, letSName, noBindSName, parSName,
    -- Dec
    funDName, valDName, dataDName, newtypeDName, tySynDName,
    classDName, instanceDName, sigDName, forImpDName,
    pragInlDName, pragSpecDName, pragSpecInlDName, pragSpecInstDName,
    pragRuleDName,
    familyNoKindDName, familyKindDName, dataInstDName, newtypeInstDName,
    tySynInstDName, closedTypeFamilyKindDName, closedTypeFamilyNoKindDName,
    infixLDName, infixRDName, infixNDName,
    -- Cxt
    cxtName,
    -- Pred
    classPName, equalPName,
    -- Strict
    isStrictName, notStrictName, unpackedName,
    -- Con
    normalCName, recCName, infixCName, forallCName,
    -- StrictType
    strictTypeName,
    -- VarStrictType
    varStrictTypeName,
    -- Type
    forallTName, varTName, conTName, appTName,
    tupleTName, unboxedTupleTName, arrowTName, listTName, sigTName, litTName,
    promotedTName, promotedTupleTName, promotedNilTName, promotedConsTName,
    -- TyLit
    numTyLitName, strTyLitName,
    -- TyVarBndr
    plainTVName, kindedTVName, roledTVName, kindedRoledTVName,
    -- Role
    nominalName, representationalName, phantomName,
    -- Kind
    varKName, conKName, tupleKName, arrowKName, listKName, appKName,
    starKName, constraintKName,
    -- Callconv
    cCallName, stdCallName,
    -- Safety
    unsafeName,
    safeName,
    interruptibleName,
    -- Inline
    noInlineDataConName, inlineDataConName, inlinableDataConName,
    -- RuleMatch
    conLikeDataConName, funLikeDataConName,
    -- Phases
    allPhasesDataConName, fromPhaseDataConName, beforePhaseDataConName,
    -- RuleBndr
    ruleVarName, typedRuleVarName,
    -- FunDep
    funDepName,
    -- FamFlavour
    typeFamName, dataFamName,
    -- TySynEqn
    tySynEqnName,

    -- And the tycons
    qTyConName, nameTyConName, patTyConName, fieldPatTyConName, matchQTyConName,
    clauseQTyConName, expQTyConName, fieldExpTyConName, predTyConName,
    stmtQTyConName, decQTyConName, conQTyConName, strictTypeQTyConName,
    varStrictTypeQTyConName, typeQTyConName, expTyConName, decTyConName,
    typeTyConName, tyVarBndrTyConName, matchTyConName, clauseTyConName,
    patQTyConName, fieldPatQTyConName, fieldExpQTyConName, funDepTyConName,
    predQTyConName, decsQTyConName, ruleBndrQTyConName, tySynEqnQTyConName,

    -- Quasiquoting
    quoteDecName, quoteTypeName, quoteExpName, quotePatName]

thSyn, thLib, qqLib :: Module
thSyn = mkTHModule (fsLit "Language.Haskell.TH.Syntax")
thLib = mkTHModule (fsLit "Language.Haskell.TH.Lib")
qqLib = mkTHModule (fsLit "Language.Haskell.TH.Quote")

mkTHModule :: FastString -> Module
mkTHModule m = mkModule thPackageId (mkModuleNameFS m)

libFun, libTc, thFun, thTc, thCon, qqFun :: FastString -> Unique -> Name
libFun = mk_known_key_name OccName.varName  thLib
libTc  = mk_known_key_name OccName.tcName   thLib
thFun  = mk_known_key_name OccName.varName  thSyn
thTc   = mk_known_key_name OccName.tcName   thSyn
thCon  = mk_known_key_name OccName.dataName thSyn
qqFun  = mk_known_key_name OccName.varName  qqLib

-------------------- TH.Syntax -----------------------
qTyConName, nameTyConName, fieldExpTyConName, patTyConName,
    fieldPatTyConName, expTyConName, decTyConName, typeTyConName,
    tyVarBndrTyConName, matchTyConName, clauseTyConName, funDepTyConName,
    predTyConName :: Name
qTyConName        = thTc (fsLit "Q")            qTyConKey
nameTyConName     = thTc (fsLit "Name")         nameTyConKey
fieldExpTyConName = thTc (fsLit "FieldExp")     fieldExpTyConKey
patTyConName      = thTc (fsLit "Pat")          patTyConKey
fieldPatTyConName = thTc (fsLit "FieldPat")     fieldPatTyConKey
expTyConName      = thTc (fsLit "Exp")          expTyConKey
decTyConName      = thTc (fsLit "Dec")          decTyConKey
typeTyConName     = thTc (fsLit "Type")         typeTyConKey
tyVarBndrTyConName= thTc (fsLit "TyVarBndr")    tyVarBndrTyConKey
matchTyConName    = thTc (fsLit "Match")        matchTyConKey
clauseTyConName   = thTc (fsLit "Clause")       clauseTyConKey
funDepTyConName   = thTc (fsLit "FunDep")       funDepTyConKey
predTyConName     = thTc (fsLit "Pred")         predTyConKey

returnQName, bindQName, sequenceQName, newNameName, liftName,
    mkNameName, mkNameG_vName, mkNameG_dName, mkNameG_tcName,
    mkNameLName, liftStringName :: Name
returnQName    = thFun (fsLit "returnQ")   returnQIdKey
bindQName      = thFun (fsLit "bindQ")     bindQIdKey
sequenceQName  = thFun (fsLit "sequenceQ") sequenceQIdKey
newNameName    = thFun (fsLit "newName")   newNameIdKey
liftName       = thFun (fsLit "lift")      liftIdKey
liftStringName = thFun (fsLit "liftString")  liftStringIdKey
mkNameName     = thFun (fsLit "mkName")     mkNameIdKey
mkNameG_vName  = thFun (fsLit "mkNameG_v")  mkNameG_vIdKey
mkNameG_dName  = thFun (fsLit "mkNameG_d")  mkNameG_dIdKey
mkNameG_tcName = thFun (fsLit "mkNameG_tc") mkNameG_tcIdKey
mkNameLName    = thFun (fsLit "mkNameL")    mkNameLIdKey


-------------------- TH.Lib -----------------------
-- data Lit = ...
charLName, stringLName, integerLName, intPrimLName, wordPrimLName,
    floatPrimLName, doublePrimLName, rationalLName :: Name
charLName       = libFun (fsLit "charL")       charLIdKey
stringLName     = libFun (fsLit "stringL")     stringLIdKey
integerLName    = libFun (fsLit "integerL")    integerLIdKey
intPrimLName    = libFun (fsLit "intPrimL")    intPrimLIdKey
wordPrimLName   = libFun (fsLit "wordPrimL")   wordPrimLIdKey
floatPrimLName  = libFun (fsLit "floatPrimL")  floatPrimLIdKey
doublePrimLName = libFun (fsLit "doublePrimL") doublePrimLIdKey
rationalLName   = libFun (fsLit "rationalL")     rationalLIdKey

-- data Pat = ...
litPName, varPName, tupPName, unboxedTupPName, conPName, infixPName, tildePName, bangPName,
    asPName, wildPName, recPName, listPName, sigPName, viewPName :: Name
litPName   = libFun (fsLit "litP")   litPIdKey
varPName   = libFun (fsLit "varP")   varPIdKey
tupPName   = libFun (fsLit "tupP")   tupPIdKey
unboxedTupPName = libFun (fsLit "unboxedTupP") unboxedTupPIdKey
conPName   = libFun (fsLit "conP")   conPIdKey
infixPName = libFun (fsLit "infixP") infixPIdKey
tildePName = libFun (fsLit "tildeP") tildePIdKey
bangPName  = libFun (fsLit "bangP")  bangPIdKey
asPName    = libFun (fsLit "asP")    asPIdKey
wildPName  = libFun (fsLit "wildP")  wildPIdKey
recPName   = libFun (fsLit "recP")   recPIdKey
listPName  = libFun (fsLit "listP")  listPIdKey
sigPName   = libFun (fsLit "sigP")   sigPIdKey
viewPName  = libFun (fsLit "viewP")  viewPIdKey

-- type FieldPat = ...
fieldPatName :: Name
fieldPatName = libFun (fsLit "fieldPat") fieldPatIdKey

-- data Match = ...
matchName :: Name
matchName = libFun (fsLit "match") matchIdKey

-- data Clause = ...
clauseName :: Name
clauseName = libFun (fsLit "clause") clauseIdKey

-- data Exp = ...
varEName, conEName, litEName, appEName, infixEName, infixAppName,
    sectionLName, sectionRName, lamEName, lamCaseEName, tupEName,
    unboxedTupEName, condEName, multiIfEName, letEName, caseEName,
    doEName, compEName :: Name
varEName        = libFun (fsLit "varE")        varEIdKey
conEName        = libFun (fsLit "conE")        conEIdKey
litEName        = libFun (fsLit "litE")        litEIdKey
appEName        = libFun (fsLit "appE")        appEIdKey
infixEName      = libFun (fsLit "infixE")      infixEIdKey
infixAppName    = libFun (fsLit "infixApp")    infixAppIdKey
sectionLName    = libFun (fsLit "sectionL")    sectionLIdKey
sectionRName    = libFun (fsLit "sectionR")    sectionRIdKey
lamEName        = libFun (fsLit "lamE")        lamEIdKey
lamCaseEName    = libFun (fsLit "lamCaseE")    lamCaseEIdKey
tupEName        = libFun (fsLit "tupE")        tupEIdKey
unboxedTupEName = libFun (fsLit "unboxedTupE") unboxedTupEIdKey
condEName       = libFun (fsLit "condE")       condEIdKey
multiIfEName    = libFun (fsLit "multiIfE")    multiIfEIdKey
letEName        = libFun (fsLit "letE")        letEIdKey
caseEName       = libFun (fsLit "caseE")       caseEIdKey
doEName         = libFun (fsLit "doE")         doEIdKey
compEName       = libFun (fsLit "compE")       compEIdKey
-- ArithSeq skips a level
fromEName, fromThenEName, fromToEName, fromThenToEName :: Name
fromEName       = libFun (fsLit "fromE")       fromEIdKey
fromThenEName   = libFun (fsLit "fromThenE")   fromThenEIdKey
fromToEName     = libFun (fsLit "fromToE")     fromToEIdKey
fromThenToEName = libFun (fsLit "fromThenToE") fromThenToEIdKey
-- end ArithSeq
listEName, sigEName, recConEName, recUpdEName :: Name
listEName       = libFun (fsLit "listE")       listEIdKey
sigEName        = libFun (fsLit "sigE")        sigEIdKey
recConEName     = libFun (fsLit "recConE")     recConEIdKey
recUpdEName     = libFun (fsLit "recUpdE")     recUpdEIdKey

-- type FieldExp = ...
fieldExpName :: Name
fieldExpName = libFun (fsLit "fieldExp") fieldExpIdKey

-- data Body = ...
guardedBName, normalBName :: Name
guardedBName = libFun (fsLit "guardedB") guardedBIdKey
normalBName  = libFun (fsLit "normalB")  normalBIdKey

-- data Guard = ...
normalGEName, patGEName :: Name
normalGEName = libFun (fsLit "normalGE") normalGEIdKey
patGEName    = libFun (fsLit "patGE")    patGEIdKey

-- data Stmt = ...
bindSName, letSName, noBindSName, parSName :: Name
bindSName   = libFun (fsLit "bindS")   bindSIdKey
letSName    = libFun (fsLit "letS")    letSIdKey
noBindSName = libFun (fsLit "noBindS") noBindSIdKey
parSName    = libFun (fsLit "parS")    parSIdKey

-- data Dec = ...
funDName, valDName, dataDName, newtypeDName, tySynDName, classDName,
    instanceDName, sigDName, forImpDName, pragInlDName, pragSpecDName,
    pragSpecInlDName, pragSpecInstDName, pragRuleDName, familyNoKindDName,
    familyKindDName, dataInstDName, newtypeInstDName, tySynInstDName,
    closedTypeFamilyKindDName, closedTypeFamilyNoKindDName,
    infixLDName, infixRDName, infixNDName :: Name
funDName          = libFun (fsLit "funD")          funDIdKey
valDName          = libFun (fsLit "valD")          valDIdKey
dataDName         = libFun (fsLit "dataD")         dataDIdKey
newtypeDName      = libFun (fsLit "newtypeD")      newtypeDIdKey
tySynDName        = libFun (fsLit "tySynD")        tySynDIdKey
classDName        = libFun (fsLit "classD")        classDIdKey
instanceDName     = libFun (fsLit "instanceD")     instanceDIdKey
sigDName          = libFun (fsLit "sigD")          sigDIdKey
forImpDName       = libFun (fsLit "forImpD")       forImpDIdKey
pragInlDName      = libFun (fsLit "pragInlD")      pragInlDIdKey
pragSpecDName     = libFun (fsLit "pragSpecD")     pragSpecDIdKey
pragSpecInlDName  = libFun (fsLit "pragSpecInlD")  pragSpecInlDIdKey
pragSpecInstDName = libFun (fsLit "pragSpecInstD") pragSpecInstDIdKey
pragRuleDName     = libFun (fsLit "pragRuleD")     pragRuleDIdKey
familyNoKindDName = libFun (fsLit "familyNoKindD") familyNoKindDIdKey
familyKindDName   = libFun (fsLit "familyKindD")   familyKindDIdKey
dataInstDName     = libFun (fsLit "dataInstD")     dataInstDIdKey
newtypeInstDName  = libFun (fsLit "newtypeInstD")  newtypeInstDIdKey
tySynInstDName    = libFun (fsLit "tySynInstD")    tySynInstDIdKey
closedTypeFamilyKindDName
                  = libFun (fsLit "closedTypeFamilyKindD") closedTypeFamilyKindDIdKey
closedTypeFamilyNoKindDName
                  = libFun (fsLit "closedTypeFamilyNoKindD") closedTypeFamilyNoKindDIdKey
infixLDName       = libFun (fsLit "infixLD")       infixLDIdKey
infixRDName       = libFun (fsLit "infixRD")       infixRDIdKey
infixNDName       = libFun (fsLit "infixND")       infixNDIdKey

-- type Ctxt = ...
cxtName :: Name
cxtName = libFun (fsLit "cxt") cxtIdKey

-- data Pred = ...
classPName, equalPName :: Name
classPName = libFun (fsLit "classP") classPIdKey
equalPName = libFun (fsLit "equalP") equalPIdKey

-- data Strict = ...
isStrictName, notStrictName, unpackedName :: Name
isStrictName      = libFun  (fsLit "isStrict")      isStrictKey
notStrictName     = libFun  (fsLit "notStrict")     notStrictKey
unpackedName      = libFun  (fsLit "unpacked")      unpackedKey

-- data Con = ...
normalCName, recCName, infixCName, forallCName :: Name
normalCName = libFun (fsLit "normalC") normalCIdKey
recCName    = libFun (fsLit "recC")    recCIdKey
infixCName  = libFun (fsLit "infixC")  infixCIdKey
forallCName  = libFun (fsLit "forallC")  forallCIdKey

-- type StrictType = ...
strictTypeName :: Name
strictTypeName    = libFun  (fsLit "strictType")    strictTKey

-- type VarStrictType = ...
varStrictTypeName :: Name
varStrictTypeName = libFun  (fsLit "varStrictType") varStrictTKey

-- data Type = ...
forallTName, varTName, conTName, tupleTName, unboxedTupleTName, arrowTName,
    listTName, appTName, sigTName, litTName,
    promotedTName, promotedTupleTName,
    promotedNilTName, promotedConsTName :: Name
forallTName         = libFun (fsLit "forallT")        forallTIdKey
varTName            = libFun (fsLit "varT")           varTIdKey
conTName            = libFun (fsLit "conT")           conTIdKey
tupleTName          = libFun (fsLit "tupleT")         tupleTIdKey
unboxedTupleTName   = libFun (fsLit "unboxedTupleT")  unboxedTupleTIdKey
arrowTName          = libFun (fsLit "arrowT")         arrowTIdKey
listTName           = libFun (fsLit "listT")          listTIdKey
appTName            = libFun (fsLit "appT")           appTIdKey
sigTName            = libFun (fsLit "sigT")           sigTIdKey
litTName            = libFun (fsLit "litT")           litTIdKey
promotedTName       = libFun (fsLit "promotedT")      promotedTIdKey
promotedTupleTName  = libFun (fsLit "promotedTupleT") promotedTupleTIdKey
promotedNilTName    = libFun (fsLit "promotedNilT")   promotedNilTIdKey
promotedConsTName   = libFun (fsLit "promotedConsT")  promotedConsTIdKey

-- data TyLit = ...
numTyLitName, strTyLitName :: Name
numTyLitName = libFun (fsLit "numTyLit") numTyLitIdKey
strTyLitName = libFun (fsLit "strTyLit") strTyLitIdKey

-- data TyVarBndr = ...
plainTVName, kindedTVName, roledTVName, kindedRoledTVName :: Name
plainTVName       = libFun (fsLit "plainTV")       plainTVIdKey
kindedTVName      = libFun (fsLit "kindedTV")      kindedTVIdKey
roledTVName       = libFun (fsLit "roledTV")       roledTVIdKey
kindedRoledTVName = libFun (fsLit "kindedRoledTV") kindedRoledTVIdKey

-- data Role = ...
nominalName, representationalName, phantomName :: Name
nominalName          = libFun (fsLit "nominal")          nominalIdKey
representationalName = libFun (fsLit "representational") representationalIdKey
phantomName          = libFun (fsLit "phantom")          phantomIdKey

-- data Kind = ...
varKName, conKName, tupleKName, arrowKName, listKName, appKName,
  starKName, constraintKName :: Name
varKName        = libFun (fsLit "varK")         varKIdKey
conKName        = libFun (fsLit "conK")         conKIdKey
tupleKName      = libFun (fsLit "tupleK")       tupleKIdKey
arrowKName      = libFun (fsLit "arrowK")       arrowKIdKey
listKName       = libFun (fsLit "listK")        listKIdKey
appKName        = libFun (fsLit "appK")         appKIdKey
starKName       = libFun (fsLit "starK")        starKIdKey
constraintKName = libFun (fsLit "constraintK")  constraintKIdKey

-- data Callconv = ...
cCallName, stdCallName :: Name
cCallName = libFun (fsLit "cCall") cCallIdKey
stdCallName = libFun (fsLit "stdCall") stdCallIdKey

-- data Safety = ...
unsafeName, safeName, interruptibleName :: Name
unsafeName     = libFun (fsLit "unsafe") unsafeIdKey
safeName       = libFun (fsLit "safe") safeIdKey
interruptibleName = libFun (fsLit "interruptible") interruptibleIdKey

-- data Inline = ...
noInlineDataConName, inlineDataConName, inlinableDataConName :: Name
noInlineDataConName  = thCon (fsLit "NoInline")  noInlineDataConKey
inlineDataConName    = thCon (fsLit "Inline")    inlineDataConKey
inlinableDataConName = thCon (fsLit "Inlinable") inlinableDataConKey

-- data RuleMatch = ...
conLikeDataConName, funLikeDataConName :: Name
conLikeDataConName = thCon (fsLit "ConLike") conLikeDataConKey
funLikeDataConName = thCon (fsLit "FunLike") funLikeDataConKey

-- data Phases = ...
allPhasesDataConName, fromPhaseDataConName, beforePhaseDataConName :: Name
allPhasesDataConName   = thCon (fsLit "AllPhases")   allPhasesDataConKey
fromPhaseDataConName   = thCon (fsLit "FromPhase")   fromPhaseDataConKey
beforePhaseDataConName = thCon (fsLit "BeforePhase") beforePhaseDataConKey

-- data RuleBndr = ...
ruleVarName, typedRuleVarName :: Name
ruleVarName      = libFun (fsLit ("ruleVar"))      ruleVarIdKey
typedRuleVarName = libFun (fsLit ("typedRuleVar")) typedRuleVarIdKey

-- data FunDep = ...
funDepName :: Name
funDepName     = libFun (fsLit "funDep") funDepIdKey

-- data FamFlavour = ...
typeFamName, dataFamName :: Name
typeFamName = libFun (fsLit "typeFam") typeFamIdKey
dataFamName = libFun (fsLit "dataFam") dataFamIdKey

-- data TySynEqn = ...
tySynEqnName :: Name
tySynEqnName = libFun (fsLit "tySynEqn") tySynEqnIdKey

matchQTyConName, clauseQTyConName, expQTyConName, stmtQTyConName,
    decQTyConName, conQTyConName, strictTypeQTyConName,
    varStrictTypeQTyConName, typeQTyConName, fieldExpQTyConName,
    patQTyConName, fieldPatQTyConName, predQTyConName, decsQTyConName,
    ruleBndrQTyConName, tySynEqnQTyConName :: Name
matchQTyConName         = libTc (fsLit "MatchQ")         matchQTyConKey
clauseQTyConName        = libTc (fsLit "ClauseQ")        clauseQTyConKey
expQTyConName           = libTc (fsLit "ExpQ")           expQTyConKey
stmtQTyConName          = libTc (fsLit "StmtQ")          stmtQTyConKey
decQTyConName           = libTc (fsLit "DecQ")           decQTyConKey
decsQTyConName          = libTc (fsLit "DecsQ")          decsQTyConKey  -- Q [Dec]
conQTyConName           = libTc (fsLit "ConQ")           conQTyConKey
strictTypeQTyConName    = libTc (fsLit "StrictTypeQ")    strictTypeQTyConKey
varStrictTypeQTyConName = libTc (fsLit "VarStrictTypeQ") varStrictTypeQTyConKey
typeQTyConName          = libTc (fsLit "TypeQ")          typeQTyConKey
fieldExpQTyConName      = libTc (fsLit "FieldExpQ")      fieldExpQTyConKey
patQTyConName           = libTc (fsLit "PatQ")           patQTyConKey
fieldPatQTyConName      = libTc (fsLit "FieldPatQ")      fieldPatQTyConKey
predQTyConName          = libTc (fsLit "PredQ")          predQTyConKey
ruleBndrQTyConName      = libTc (fsLit "RuleBndrQ")      ruleBndrQTyConKey
tySynEqnQTyConName      = libTc (fsLit "TySynEqnQ")      tySynEqnQTyConKey

-- quasiquoting
quoteExpName, quotePatName, quoteDecName, quoteTypeName :: Name
quoteExpName        = qqFun (fsLit "quoteExp")  quoteExpKey
quotePatName        = qqFun (fsLit "quotePat")  quotePatKey
quoteDecName        = qqFun (fsLit "quoteDec")  quoteDecKey
quoteTypeName       = qqFun (fsLit "quoteType") quoteTypeKey

-- TyConUniques available: 200-299
-- Check in PrelNames if you want to change this

expTyConKey, matchTyConKey, clauseTyConKey, qTyConKey, expQTyConKey,
    decQTyConKey, patTyConKey, matchQTyConKey, clauseQTyConKey,
    stmtQTyConKey, conQTyConKey, typeQTyConKey, typeTyConKey, tyVarBndrTyConKey,
    decTyConKey, varStrictTypeQTyConKey, strictTypeQTyConKey,
    fieldExpTyConKey, fieldPatTyConKey, nameTyConKey, patQTyConKey,
    fieldPatQTyConKey, fieldExpQTyConKey, funDepTyConKey, predTyConKey,
    predQTyConKey, decsQTyConKey, ruleBndrQTyConKey, tySynEqnQTyConKey :: Unique
expTyConKey             = mkPreludeTyConUnique 200
matchTyConKey           = mkPreludeTyConUnique 201
clauseTyConKey          = mkPreludeTyConUnique 202
qTyConKey               = mkPreludeTyConUnique 203
expQTyConKey            = mkPreludeTyConUnique 204
decQTyConKey            = mkPreludeTyConUnique 205
patTyConKey             = mkPreludeTyConUnique 206
matchQTyConKey          = mkPreludeTyConUnique 207
clauseQTyConKey         = mkPreludeTyConUnique 208
stmtQTyConKey           = mkPreludeTyConUnique 209
conQTyConKey            = mkPreludeTyConUnique 210
typeQTyConKey           = mkPreludeTyConUnique 211
typeTyConKey            = mkPreludeTyConUnique 212
decTyConKey             = mkPreludeTyConUnique 213
varStrictTypeQTyConKey  = mkPreludeTyConUnique 214
strictTypeQTyConKey     = mkPreludeTyConUnique 215
fieldExpTyConKey        = mkPreludeTyConUnique 216
fieldPatTyConKey        = mkPreludeTyConUnique 217
nameTyConKey            = mkPreludeTyConUnique 218
patQTyConKey            = mkPreludeTyConUnique 219
fieldPatQTyConKey       = mkPreludeTyConUnique 220
fieldExpQTyConKey       = mkPreludeTyConUnique 221
funDepTyConKey          = mkPreludeTyConUnique 222
predTyConKey            = mkPreludeTyConUnique 223
predQTyConKey           = mkPreludeTyConUnique 224
tyVarBndrTyConKey       = mkPreludeTyConUnique 225
decsQTyConKey           = mkPreludeTyConUnique 226
ruleBndrQTyConKey       = mkPreludeTyConUnique 227
tySynEqnQTyConKey       = mkPreludeTyConUnique 228

-- IdUniques available: 200-499
-- If you want to change this, make sure you check in PrelNames

returnQIdKey, bindQIdKey, sequenceQIdKey, liftIdKey, newNameIdKey,
    mkNameIdKey, mkNameG_vIdKey, mkNameG_dIdKey, mkNameG_tcIdKey,
    mkNameLIdKey :: Unique
returnQIdKey        = mkPreludeMiscIdUnique 200
bindQIdKey          = mkPreludeMiscIdUnique 201
sequenceQIdKey      = mkPreludeMiscIdUnique 202
liftIdKey           = mkPreludeMiscIdUnique 203
newNameIdKey         = mkPreludeMiscIdUnique 204
mkNameIdKey          = mkPreludeMiscIdUnique 205
mkNameG_vIdKey       = mkPreludeMiscIdUnique 206
mkNameG_dIdKey       = mkPreludeMiscIdUnique 207
mkNameG_tcIdKey      = mkPreludeMiscIdUnique 208
mkNameLIdKey         = mkPreludeMiscIdUnique 209


-- data Lit = ...
charLIdKey, stringLIdKey, integerLIdKey, intPrimLIdKey, wordPrimLIdKey,
    floatPrimLIdKey, doublePrimLIdKey, rationalLIdKey :: Unique
charLIdKey        = mkPreludeMiscIdUnique 220
stringLIdKey      = mkPreludeMiscIdUnique 221
integerLIdKey     = mkPreludeMiscIdUnique 222
intPrimLIdKey     = mkPreludeMiscIdUnique 223
wordPrimLIdKey    = mkPreludeMiscIdUnique 224
floatPrimLIdKey   = mkPreludeMiscIdUnique 225
doublePrimLIdKey  = mkPreludeMiscIdUnique 226
rationalLIdKey    = mkPreludeMiscIdUnique 227

liftStringIdKey :: Unique
liftStringIdKey     = mkPreludeMiscIdUnique 228

-- data Pat = ...
litPIdKey, varPIdKey, tupPIdKey, unboxedTupPIdKey, conPIdKey, infixPIdKey, tildePIdKey, bangPIdKey,
    asPIdKey, wildPIdKey, recPIdKey, listPIdKey, sigPIdKey, viewPIdKey :: Unique
litPIdKey         = mkPreludeMiscIdUnique 240
varPIdKey         = mkPreludeMiscIdUnique 241
tupPIdKey         = mkPreludeMiscIdUnique 242
unboxedTupPIdKey  = mkPreludeMiscIdUnique 243
conPIdKey         = mkPreludeMiscIdUnique 244
infixPIdKey       = mkPreludeMiscIdUnique 245
tildePIdKey       = mkPreludeMiscIdUnique 246
bangPIdKey        = mkPreludeMiscIdUnique 247
asPIdKey          = mkPreludeMiscIdUnique 248
wildPIdKey        = mkPreludeMiscIdUnique 249
recPIdKey         = mkPreludeMiscIdUnique 250
listPIdKey        = mkPreludeMiscIdUnique 251
sigPIdKey         = mkPreludeMiscIdUnique 252
viewPIdKey        = mkPreludeMiscIdUnique 253

-- type FieldPat = ...
fieldPatIdKey :: Unique
fieldPatIdKey       = mkPreludeMiscIdUnique 260

-- data Match = ...
matchIdKey :: Unique
matchIdKey          = mkPreludeMiscIdUnique 261

-- data Clause = ...
clauseIdKey :: Unique
clauseIdKey         = mkPreludeMiscIdUnique 262


-- data Exp = ...
varEIdKey, conEIdKey, litEIdKey, appEIdKey, infixEIdKey, infixAppIdKey,
    sectionLIdKey, sectionRIdKey, lamEIdKey, lamCaseEIdKey, tupEIdKey,
    unboxedTupEIdKey, condEIdKey, multiIfEIdKey,
    letEIdKey, caseEIdKey, doEIdKey, compEIdKey,
    fromEIdKey, fromThenEIdKey, fromToEIdKey, fromThenToEIdKey,
    listEIdKey, sigEIdKey, recConEIdKey, recUpdEIdKey :: Unique
varEIdKey         = mkPreludeMiscIdUnique 270
conEIdKey         = mkPreludeMiscIdUnique 271
litEIdKey         = mkPreludeMiscIdUnique 272
appEIdKey         = mkPreludeMiscIdUnique 273
infixEIdKey       = mkPreludeMiscIdUnique 274
infixAppIdKey     = mkPreludeMiscIdUnique 275
sectionLIdKey     = mkPreludeMiscIdUnique 276
sectionRIdKey     = mkPreludeMiscIdUnique 277
lamEIdKey         = mkPreludeMiscIdUnique 278
lamCaseEIdKey     = mkPreludeMiscIdUnique 279
tupEIdKey         = mkPreludeMiscIdUnique 280
unboxedTupEIdKey  = mkPreludeMiscIdUnique 281
condEIdKey        = mkPreludeMiscIdUnique 282
multiIfEIdKey     = mkPreludeMiscIdUnique 283
letEIdKey         = mkPreludeMiscIdUnique 284
caseEIdKey        = mkPreludeMiscIdUnique 285
doEIdKey          = mkPreludeMiscIdUnique 286
compEIdKey        = mkPreludeMiscIdUnique 287
fromEIdKey        = mkPreludeMiscIdUnique 288
fromThenEIdKey    = mkPreludeMiscIdUnique 289
fromToEIdKey      = mkPreludeMiscIdUnique 290
fromThenToEIdKey  = mkPreludeMiscIdUnique 291
listEIdKey        = mkPreludeMiscIdUnique 292
sigEIdKey         = mkPreludeMiscIdUnique 293
recConEIdKey      = mkPreludeMiscIdUnique 294
recUpdEIdKey      = mkPreludeMiscIdUnique 295

-- type FieldExp = ...
fieldExpIdKey :: Unique
fieldExpIdKey       = mkPreludeMiscIdUnique 310

-- data Body = ...
guardedBIdKey, normalBIdKey :: Unique
guardedBIdKey     = mkPreludeMiscIdUnique 311
normalBIdKey      = mkPreludeMiscIdUnique 312

-- data Guard = ...
normalGEIdKey, patGEIdKey :: Unique
normalGEIdKey     = mkPreludeMiscIdUnique 313
patGEIdKey        = mkPreludeMiscIdUnique 314

-- data Stmt = ...
bindSIdKey, letSIdKey, noBindSIdKey, parSIdKey :: Unique
bindSIdKey       = mkPreludeMiscIdUnique 320
letSIdKey        = mkPreludeMiscIdUnique 321
noBindSIdKey     = mkPreludeMiscIdUnique 322
parSIdKey        = mkPreludeMiscIdUnique 323

-- data Dec = ...
funDIdKey, valDIdKey, dataDIdKey, newtypeDIdKey, tySynDIdKey,
    classDIdKey, instanceDIdKey, sigDIdKey, forImpDIdKey, pragInlDIdKey,
    pragSpecDIdKey, pragSpecInlDIdKey, pragSpecInstDIdKey, pragRuleDIdKey,
    familyNoKindDIdKey, familyKindDIdKey,
    dataInstDIdKey, newtypeInstDIdKey, tySynInstDIdKey,
    closedTypeFamilyKindDIdKey, closedTypeFamilyNoKindDIdKey,
    infixLDIdKey, infixRDIdKey, infixNDIdKey :: Unique
funDIdKey                    = mkPreludeMiscIdUnique 330
valDIdKey                    = mkPreludeMiscIdUnique 331
dataDIdKey                   = mkPreludeMiscIdUnique 332
newtypeDIdKey                = mkPreludeMiscIdUnique 333
tySynDIdKey                  = mkPreludeMiscIdUnique 334
classDIdKey                  = mkPreludeMiscIdUnique 335
instanceDIdKey               = mkPreludeMiscIdUnique 336
sigDIdKey                    = mkPreludeMiscIdUnique 337
forImpDIdKey                 = mkPreludeMiscIdUnique 338
pragInlDIdKey                = mkPreludeMiscIdUnique 339
pragSpecDIdKey               = mkPreludeMiscIdUnique 340
pragSpecInlDIdKey            = mkPreludeMiscIdUnique 341
pragSpecInstDIdKey           = mkPreludeMiscIdUnique 416
pragRuleDIdKey               = mkPreludeMiscIdUnique 417
familyNoKindDIdKey           = mkPreludeMiscIdUnique 342
familyKindDIdKey             = mkPreludeMiscIdUnique 343
dataInstDIdKey               = mkPreludeMiscIdUnique 344
newtypeInstDIdKey            = mkPreludeMiscIdUnique 345
tySynInstDIdKey              = mkPreludeMiscIdUnique 346
closedTypeFamilyKindDIdKey   = mkPreludeMiscIdUnique 347
closedTypeFamilyNoKindDIdKey = mkPreludeMiscIdUnique 348
infixLDIdKey                 = mkPreludeMiscIdUnique 349
infixRDIdKey                 = mkPreludeMiscIdUnique 350
infixNDIdKey                 = mkPreludeMiscIdUnique 351

-- type Cxt = ...
cxtIdKey :: Unique
cxtIdKey            = mkPreludeMiscIdUnique 360

-- data Pred = ...
classPIdKey, equalPIdKey :: Unique
classPIdKey         = mkPreludeMiscIdUnique 361
equalPIdKey         = mkPreludeMiscIdUnique 362

-- data Strict = ...
isStrictKey, notStrictKey, unpackedKey :: Unique
isStrictKey         = mkPreludeMiscIdUnique 363
notStrictKey        = mkPreludeMiscIdUnique 364
unpackedKey         = mkPreludeMiscIdUnique 365

-- data Con = ...
normalCIdKey, recCIdKey, infixCIdKey, forallCIdKey :: Unique
normalCIdKey      = mkPreludeMiscIdUnique 370
recCIdKey         = mkPreludeMiscIdUnique 371
infixCIdKey       = mkPreludeMiscIdUnique 372
forallCIdKey      = mkPreludeMiscIdUnique 373

-- type StrictType = ...
strictTKey :: Unique
strictTKey        = mkPreludeMiscIdUnique 374

-- type VarStrictType = ...
varStrictTKey :: Unique
varStrictTKey     = mkPreludeMiscIdUnique 375

-- data Type = ...
forallTIdKey, varTIdKey, conTIdKey, tupleTIdKey, unboxedTupleTIdKey, arrowTIdKey,
    listTIdKey, appTIdKey, sigTIdKey, litTIdKey,
    promotedTIdKey, promotedTupleTIdKey,
    promotedNilTIdKey, promotedConsTIdKey :: Unique
forallTIdKey        = mkPreludeMiscIdUnique 380
varTIdKey           = mkPreludeMiscIdUnique 381
conTIdKey           = mkPreludeMiscIdUnique 382
tupleTIdKey         = mkPreludeMiscIdUnique 383
unboxedTupleTIdKey  = mkPreludeMiscIdUnique 384
arrowTIdKey         = mkPreludeMiscIdUnique 385
listTIdKey          = mkPreludeMiscIdUnique 386
appTIdKey           = mkPreludeMiscIdUnique 387
sigTIdKey           = mkPreludeMiscIdUnique 388
litTIdKey           = mkPreludeMiscIdUnique 389
promotedTIdKey      = mkPreludeMiscIdUnique 390
promotedTupleTIdKey = mkPreludeMiscIdUnique 391
promotedNilTIdKey   = mkPreludeMiscIdUnique 392
promotedConsTIdKey  = mkPreludeMiscIdUnique 393

-- data TyLit = ...
numTyLitIdKey, strTyLitIdKey :: Unique
numTyLitIdKey = mkPreludeMiscIdUnique 394
strTyLitIdKey = mkPreludeMiscIdUnique 395

-- data TyVarBndr = ...
plainTVIdKey, kindedTVIdKey, roledTVIdKey, kindedRoledTVIdKey :: Unique
plainTVIdKey       = mkPreludeMiscIdUnique 396
kindedTVIdKey      = mkPreludeMiscIdUnique 397
roledTVIdKey       = mkPreludeMiscIdUnique 398
kindedRoledTVIdKey = mkPreludeMiscIdUnique 399

-- data Role = ...
nominalIdKey, representationalIdKey, phantomIdKey :: Unique
nominalIdKey          = mkPreludeMiscIdUnique 400
representationalIdKey = mkPreludeMiscIdUnique 401
phantomIdKey          = mkPreludeMiscIdUnique 402

-- data Kind = ...
varKIdKey, conKIdKey, tupleKIdKey, arrowKIdKey, listKIdKey, appKIdKey,
  starKIdKey, constraintKIdKey :: Unique
varKIdKey         = mkPreludeMiscIdUnique 403
conKIdKey         = mkPreludeMiscIdUnique 404
tupleKIdKey       = mkPreludeMiscIdUnique 405
arrowKIdKey       = mkPreludeMiscIdUnique 406
listKIdKey        = mkPreludeMiscIdUnique 407
appKIdKey         = mkPreludeMiscIdUnique 408
starKIdKey        = mkPreludeMiscIdUnique 409
constraintKIdKey  = mkPreludeMiscIdUnique 410

-- data Callconv = ...
cCallIdKey, stdCallIdKey :: Unique
cCallIdKey      = mkPreludeMiscIdUnique 411
stdCallIdKey    = mkPreludeMiscIdUnique 412

-- data Safety = ...
unsafeIdKey, safeIdKey, interruptibleIdKey :: Unique
unsafeIdKey        = mkPreludeMiscIdUnique 413
safeIdKey          = mkPreludeMiscIdUnique 414
interruptibleIdKey = mkPreludeMiscIdUnique 415

-- data Inline = ...
noInlineDataConKey, inlineDataConKey, inlinableDataConKey :: Unique
noInlineDataConKey  = mkPreludeDataConUnique 40
inlineDataConKey    = mkPreludeDataConUnique 41
inlinableDataConKey = mkPreludeDataConUnique 42

-- data RuleMatch = ...
conLikeDataConKey, funLikeDataConKey :: Unique
conLikeDataConKey = mkPreludeDataConUnique 43
funLikeDataConKey = mkPreludeDataConUnique 44

-- data Phases = ...
allPhasesDataConKey, fromPhaseDataConKey, beforePhaseDataConKey :: Unique
allPhasesDataConKey   = mkPreludeDataConUnique 45
fromPhaseDataConKey   = mkPreludeDataConUnique 46
beforePhaseDataConKey = mkPreludeDataConUnique 47

-- data FunDep = ...
funDepIdKey :: Unique
funDepIdKey = mkPreludeMiscIdUnique 418

-- data FamFlavour = ...
typeFamIdKey, dataFamIdKey :: Unique
typeFamIdKey = mkPreludeMiscIdUnique 419
dataFamIdKey = mkPreludeMiscIdUnique 420

-- data TySynEqn = ...
tySynEqnIdKey :: Unique
tySynEqnIdKey = mkPreludeMiscIdUnique 421

-- quasiquoting
quoteExpKey, quotePatKey, quoteDecKey, quoteTypeKey :: Unique
quoteExpKey  = mkPreludeMiscIdUnique 422
quotePatKey  = mkPreludeMiscIdUnique 423
quoteDecKey  = mkPreludeMiscIdUnique 424
quoteTypeKey = mkPreludeMiscIdUnique 425

-- data RuleBndr = ...
ruleVarIdKey, typedRuleVarIdKey :: Unique
ruleVarIdKey      = mkPreludeMiscIdUnique 426
typedRuleVarIdKey = mkPreludeMiscIdUnique 427