%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
Pattern-matching bindings (HsBinds and MonoBinds)
Handles @HsBinds@; those at the top level require different handling,
in that the @Rec@/@NonRec@/etc structure is thrown away (whereas at
lower levels it is preserved with @let@/@letrec@s).
\begin{code}
module DsBinds ( dsTopLHsBinds, dsLHsBinds, decomposeRuleLhs, dsSpec,
dsHsWrapper, dsTcEvBinds, dsEvBinds
) where
#include "HsVersions.h"
import DsExpr( dsLExpr )
import Match( matchWrapper )
import DsMonad
import DsGRHSs
import DsUtils
import HsSyn
import CoreSyn
import Literal ( Literal(MachStr) )
import CoreSubst
import MkCore
import CoreUtils
import CoreArity ( etaExpand )
import CoreUnfold
import CoreFVs
import UniqSupply
import Unique( Unique )
import Digraph
import TyCon ( isTupleTyCon, tyConDataCons_maybe )
import TcEvidence
import TcType
import Type
import Coercion hiding (substCo)
import TysWiredIn ( eqBoxDataCon, tupleCon )
import Id
import Class
import DataCon ( dataConWorkId )
import Name
import MkId ( seqId )
import Var
import VarSet
import Rules
import VarEnv
import Outputable
import SrcLoc
import Maybes
import OrdList
import Bag
import BasicTypes hiding ( TopLevel )
import Pair
import DynFlags
import FastString
import ErrUtils( MsgDoc )
import ListSetOps( getNth )
import Util
import Control.Monad( when )
import MonadUtils
import Control.Monad(liftM)
\end{code}
%************************************************************************
%* *
\subsection[dsMonoBinds]{Desugaring a @MonoBinds@}
%* *
%************************************************************************
\begin{code}
dsTopLHsBinds :: LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
dsTopLHsBinds binds = ds_lhs_binds binds
dsLHsBinds :: LHsBinds Id -> DsM [(Id,CoreExpr)]
dsLHsBinds binds = do { binds' <- ds_lhs_binds binds
; return (fromOL binds') }
ds_lhs_binds :: LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
ds_lhs_binds binds = do { ds_bs <- mapBagM dsLHsBind binds
; return (foldBag appOL id nilOL ds_bs) }
dsLHsBind :: LHsBind Id -> DsM (OrdList (Id,CoreExpr))
dsLHsBind (L loc bind)
= putSrcSpanDs loc $ dsHsBind bind
dsHsBind :: HsBind Id -> DsM (OrdList (Id,CoreExpr))
dsHsBind (VarBind { var_id = var, var_rhs = expr, var_inline = inline_regardless })
= do { dflags <- getDynFlags
; core_expr <- dsLExpr expr
; let var' | inline_regardless = var `setIdUnfolding` mkCompulsoryUnfolding core_expr
| otherwise = var
; return (unitOL (makeCorePair dflags var' False 0 core_expr)) }
dsHsBind (FunBind { fun_id = L _ fun, fun_matches = matches
, fun_co_fn = co_fn, fun_tick = tick
, fun_infix = inf })
= do { dflags <- getDynFlags
; (args, body) <- matchWrapper (FunRhs (idName fun) inf) matches
; let body' = mkOptTickBox tick body
; rhs <- dsHsWrapper co_fn (mkLams args body')
;
return (unitOL (makeCorePair dflags fun False 0 rhs)) }
dsHsBind (PatBind { pat_lhs = pat, pat_rhs = grhss, pat_rhs_ty = ty
, pat_ticks = (rhs_tick, var_ticks) })
= do { body_expr <- dsGuarded grhss ty
; let body' = mkOptTickBox rhs_tick body_expr
; sel_binds <- mkSelectorBinds var_ticks pat body'
; return (toOL sel_binds) }
dsHsBind (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
, abs_exports = [export]
, abs_ev_binds = ev_binds, abs_binds = binds })
| ABE { abe_wrap = wrap, abe_poly = global
, abe_mono = local, abe_prags = prags } <- export
= do { dflags <- getDynFlags
; bind_prs <- ds_lhs_binds binds
; let core_bind = Rec (fromOL bind_prs)
; ds_binds <- dsTcEvBinds ev_binds
; rhs <- dsHsWrapper wrap $
mkLams tyvars $ mkLams dicts $
mkCoreLets ds_binds $
Let core_bind $
Var local
; (spec_binds, rules) <- dsSpecs rhs prags
; let global' = addIdSpecialisations global rules
main_bind = makeCorePair dflags global' (isDefaultMethod prags)
(dictArity dicts) rhs
; return (main_bind `consOL` spec_binds) }
dsHsBind (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
, abs_exports = exports, abs_ev_binds = ev_binds
, abs_binds = binds })
= do { dflags <- getDynFlags
; bind_prs <- ds_lhs_binds binds
; let core_bind = Rec [ makeCorePair dflags (add_inline lcl_id) False 0 rhs
| (lcl_id, rhs) <- fromOL bind_prs ]
locals = map abe_mono exports
tup_expr = mkBigCoreVarTup locals
tup_ty = exprType tup_expr
; ds_binds <- dsTcEvBinds ev_binds
; let poly_tup_rhs = mkLams tyvars $ mkLams dicts $
mkCoreLets ds_binds $
Let core_bind $
tup_expr
; poly_tup_id <- newSysLocalDs (exprType poly_tup_rhs)
; let mk_bind (ABE { abe_wrap = wrap, abe_poly = global
, abe_mono = local, abe_prags = spec_prags })
= do { tup_id <- newSysLocalDs tup_ty
; rhs <- dsHsWrapper wrap $
mkLams tyvars $ mkLams dicts $
mkTupleSelector locals local tup_id $
mkVarApps (Var poly_tup_id) (tyvars ++ dicts)
; let rhs_for_spec = Let (NonRec poly_tup_id poly_tup_rhs) rhs
; (spec_binds, rules) <- dsSpecs rhs_for_spec spec_prags
; let global' = (global `setInlinePragma` defaultInlinePragma)
`addIdSpecialisations` rules
; return ((global', rhs) `consOL` spec_binds) }
; export_binds_s <- mapM mk_bind exports
; return ((poly_tup_id, poly_tup_rhs) `consOL`
concatOL export_binds_s) }
where
inline_env :: IdEnv Id
inline_env = mkVarEnv [ (lcl_id, setInlinePragma lcl_id prag)
| ABE { abe_mono = lcl_id, abe_poly = gbl_id } <- exports
, let prag = idInlinePragma gbl_id ]
add_inline :: Id -> Id
add_inline lcl_id = lookupVarEnv inline_env lcl_id `orElse` lcl_id
makeCorePair :: DynFlags -> Id -> Bool -> Arity -> CoreExpr -> (Id, CoreExpr)
makeCorePair dflags gbl_id is_default_method dict_arity rhs
| is_default_method
= (gbl_id `setIdUnfolding` mkCompulsoryUnfolding rhs, rhs)
| otherwise
= case inlinePragmaSpec inline_prag of
EmptyInlineSpec -> (gbl_id, rhs)
NoInline -> (gbl_id, rhs)
Inlinable -> (gbl_id `setIdUnfolding` inlinable_unf, rhs)
Inline -> inline_pair
where
inline_prag = idInlinePragma gbl_id
inlinable_unf = mkInlinableUnfolding dflags rhs
inline_pair
| Just arity <- inlinePragmaSat inline_prag
, let real_arity = dict_arity + arity
= ( gbl_id `setIdUnfolding` mkInlineUnfolding (Just real_arity) rhs
, etaExpand real_arity rhs)
| otherwise
= pprTrace "makeCorePair: arity missing" (ppr gbl_id) $
(gbl_id `setIdUnfolding` mkInlineUnfolding Nothing rhs, rhs)
dictArity :: [Var] -> Arity
dictArity dicts = count isId dicts
\end{code}
[Desugaring AbsBinds]
~~~~~~~~~~~~~~~~~~~~~
In the general AbsBinds case we desugar the binding to this:
tup a (d:Num a) = let fm = ...gm...
gm = ...fm...
in (fm,gm)
f a d = case tup a d of { (fm,gm) -> fm }
g a d = case tup a d of { (fm,gm) -> fm }
Note [Rules and inlining]
~~~~~~~~~~~~~~~~~~~~~~~~~
Common special case: no type or dictionary abstraction
This is a bit less trivial than you might suppose
The naive way woudl be to desguar to something like
f_lcl = ...f_lcl... -- The "binds" from AbsBinds
M.f = f_lcl -- Generated from "exports"
But we don't want that, because if M.f isn't exported,
it'll be inlined unconditionally at every call site (its rhs is
trivial). That would be ok unless it has RULES, which would
thereby be completely lost. Bad, bad, bad.
Instead we want to generate
M.f = ...f_lcl...
f_lcl = M.f
Now all is cool. The RULES are attached to M.f (by SimplCore),
and f_lcl is rapidly inlined away.
This does not happen in the same way to polymorphic binds,
because they desugar to
M.f = /\a. let f_lcl = ...f_lcl... in f_lcl
Although I'm a bit worried about whether full laziness might
float the f_lcl binding out and then inline M.f at its call site
Note [Specialising in no-dict case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even if there are no tyvars or dicts, we may have specialisation pragmas.
Class methods can generate
AbsBinds [] [] [( ... spec-prag]
{ AbsBinds [tvs] [dicts] ...blah }
So the overloading is in the nested AbsBinds. A good example is in GHC.Float:
class (Real a, Fractional a) => RealFrac a where
round :: (Integral b) => a -> b
instance RealFrac Float where
{-# SPECIALIZE round :: Float -> Int #-}
The top-level AbsBinds for $cround has no tyvars or dicts (because the
instance does not). But the method is locally overloaded!
Note [Abstracting over tyvars only]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When abstracting over type variable only (not dictionaries), we don't really need to
built a tuple and select from it, as we do in the general case. Instead we can take
AbsBinds [a,b] [ ([a,b], fg, fl, _),
([b], gg, gl, _) ]
{ fl = e1
gl = e2
h = e3 }
and desugar it to
fg = /\ab. let B in e1
gg = /\b. let a = () in let B in S(e2)
h = /\ab. let B in e3
where B is the *non-recursive* binding
fl = fg a b
gl = gg b
h = h a b -- See (b); note shadowing!
Notice (a) g has a different number of type variables to f, so we must
use the mkArbitraryType thing to fill in the gaps.
We use a type-let to do that.
(b) The local variable h isn't in the exports, and rather than
clone a fresh copy we simply replace h by (h a b), where
the two h's have different types! Shadowing happens here,
which looks confusing but works fine.
(c) The result is *still* quadratic-sized if there are a lot of
small bindings. So if there are more than some small
number (10), we filter the binding set B by the free
variables of the particular RHS. Tiresome.
Why got to this trouble? It's a common case, and it removes the
quadratic-sized tuple desugaring. Less clutter, hopefullly faster
compilation, especially in a case where there are a *lot* of
bindings.
Note [Eta-expanding INLINE things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
foo :: Eq a => a -> a
{-# INLINE foo #-}
foo x = ...
If (foo d) ever gets floated out as a common sub-expression (which can
happen as a result of method sharing), there's a danger that we never
get to do the inlining, which is a Terribly Bad thing given that the
user said "inline"!
To avoid this we pre-emptively eta-expand the definition, so that foo
has the arity with which it is declared in the source code. In this
example it has arity 2 (one for the Eq and one for x). Doing this
should mean that (foo d) is a PAP and we don't share it.
Note [Nested arities]
~~~~~~~~~~~~~~~~~~~~~
For reasons that are not entirely clear, method bindings come out looking like
this:
AbsBinds [] [] [$cfromT <= [] fromT]
$cfromT [InlPrag=INLINE] :: T Bool -> Bool
{ AbsBinds [] [] [fromT <= [] fromT_1]
fromT :: T Bool -> Bool
{ fromT_1 ((TBool b)) = not b } } }
Note the nested AbsBind. The arity for the InlineRule on $cfromT should be
gotten from the binding for fromT_1.
It might be better to have just one level of AbsBinds, but that requires more
thought!
Note [Implementing SPECIALISE pragmas]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Example:
f :: (Eq a, Ix b) => a -> b -> Bool
{-# SPECIALISE f :: (Ix p, Ix q) => Int -> (p,q) -> Bool #-}
f =
From this the typechecker generates
AbsBinds [ab] [d1,d2] [([ab], f, f_mono, prags)] binds
SpecPrag (wrap_fn :: forall a b. (Eq a, Ix b) => XXX
-> forall p q. (Ix p, Ix q) => XXX[ Int/a, (p,q)/b ])
Note that wrap_fn can transform *any* function with the right type prefix
forall ab. (Eq a, Ix b) => XXX
regardless of XXX. It's sort of polymorphic in XXX. This is
useful: we use the same wrapper to transform each of the class ops, as
well as the dict.
From these we generate:
Rule: forall p, q, (dp:Ix p), (dq:Ix q).
f Int (p,q) dInt ($dfInPair dp dq) = f_spec p q dp dq
Spec bind: f_spec = wrap_fn
Note that
* The LHS of the rule may mention dictionary *expressions* (eg
$dfIxPair dp dq), and that is essential because the dp, dq are
needed on the RHS.
* The RHS of f_spec, has a *copy* of 'binds', so that it
can fully specialise it.
\begin{code}
dsSpecs :: CoreExpr
-> TcSpecPrags
-> DsM ( OrdList (Id,CoreExpr)
, [CoreRule] )
dsSpecs _ IsDefaultMethod = return (nilOL, [])
dsSpecs poly_rhs (SpecPrags sps)
= do { pairs <- mapMaybeM (dsSpec (Just poly_rhs)) sps
; let (spec_binds_s, rules) = unzip pairs
; return (concatOL spec_binds_s, rules) }
dsSpec :: Maybe CoreExpr
-> Located TcSpecPrag
-> DsM (Maybe (OrdList (Id,CoreExpr), CoreRule))
dsSpec mb_poly_rhs (L loc (SpecPrag poly_id spec_co spec_inl))
| isJust (isClassOpId_maybe poly_id)
= putSrcSpanDs loc $
do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for class method selector")
<+> quotes (ppr poly_id))
; return Nothing }
| no_act_spec && isNeverActive rule_act
= putSrcSpanDs loc $
do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for NOINLINE function:")
<+> quotes (ppr poly_id))
; return Nothing }
| otherwise
= putSrcSpanDs loc $
do { uniq <- newUnique
; let poly_name = idName poly_id
spec_occ = mkSpecOcc (getOccName poly_name)
spec_name = mkInternalName uniq spec_occ (getSrcSpan poly_name)
; (bndrs, ds_lhs) <- liftM collectBinders
(dsHsWrapper spec_co (Var poly_id))
; let spec_ty = mkPiTypes bndrs (exprType ds_lhs)
; case decomposeRuleLhs bndrs ds_lhs of {
Left msg -> do { warnDs msg; return Nothing } ;
Right (rule_bndrs, _fn, args) -> do
{ dflags <- getDynFlags
; let spec_unf = specUnfolding bndrs args (realIdUnfolding poly_id)
spec_id = mkLocalId spec_name spec_ty
`setInlinePragma` inl_prag
`setIdUnfolding` spec_unf
rule = mkRule False is_local_id
(mkFastString ("SPEC " ++ showPpr dflags poly_name))
rule_act poly_name
rule_bndrs args
(mkVarApps (Var spec_id) bndrs)
; spec_rhs <- dsHsWrapper spec_co poly_rhs
; let spec_pair = makeCorePair dflags spec_id False (dictArity bndrs) spec_rhs
; when (isInlinePragma id_inl && wopt Opt_WarnPointlessPragmas dflags)
(warnDs (specOnInline poly_name))
; return (Just (unitOL spec_pair, rule))
} } }
where
is_local_id = isJust mb_poly_rhs
poly_rhs | Just rhs <- mb_poly_rhs
= rhs
| Just unfolding <- maybeUnfoldingTemplate (realIdUnfolding poly_id)
= unfolding
| otherwise = pprPanic "dsImpSpecs" (ppr poly_id)
id_inl = idInlinePragma poly_id
inl_prag | not (isDefaultInlinePragma spec_inl) = spec_inl
| not is_local_id
, isStrongLoopBreaker (idOccInfo poly_id) = neverInlinePragma
| otherwise = id_inl
spec_prag_act = inlinePragmaActivation spec_inl
no_act_spec = case inlinePragmaSpec spec_inl of
NoInline -> isNeverActive spec_prag_act
_ -> isAlwaysActive spec_prag_act
rule_act | no_act_spec = inlinePragmaActivation id_inl
| otherwise = spec_prag_act
specUnfolding :: [Var] -> [CoreExpr] -> Unfolding -> Unfolding
specUnfolding new_bndrs new_args df@(DFunUnfolding { df_bndrs = bndrs, df_args = args })
= ASSERT2( equalLength new_args bndrs, ppr df $$ ppr new_args $$ ppr new_bndrs )
df { df_bndrs = new_bndrs, df_args = map (substExpr (text "specUnfolding") subst) args }
where
subst = mkOpenSubst (mkInScopeSet fvs) (bndrs `zip` new_args)
fvs = (exprsFreeVars args `delVarSetList` bndrs) `extendVarSetList` new_bndrs
specUnfolding _ _ _ = noUnfolding
specOnInline :: Name -> MsgDoc
specOnInline f = ptext (sLit "SPECIALISE pragma on INLINE function probably won't fire:")
<+> quotes (ppr f)
\end{code}
Note [Activation pragmas for SPECIALISE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
From a user SPECIALISE pragma for f, we generate
a) A top-level binding spec_fn = rhs
b) A RULE f dOrd = spec_fn
We need two pragma-like things:
* spec_fn's inline pragma: inherited from f's inline pragma (ignoring
activation on SPEC), unless overriden by SPEC INLINE
* Activation of RULE: from SPECIALISE pragma (if activation given)
otherwise from f's inline pragma
This is not obvious (see Trac #5237)!
Examples Rule activation Inline prag on spec'd fn
---------------------------------------------------------------------
SPEC [n] f :: ty [n] Always, or NOINLINE [n]
copy f's prag
NOINLINE f
SPEC [n] f :: ty [n] NOINLINE
copy f's prag
NOINLINE [k] f
SPEC [n] f :: ty [n] NOINLINE [k]
copy f's prag
INLINE [k] f
SPEC [n] f :: ty [n] INLINE [k]
copy f's prag
SPEC INLINE [n] f :: ty [n] INLINE [n]
(ignore INLINE prag on f,
same activation for rule and spec'd fn)
NOINLINE [k] f
SPEC f :: ty [n] INLINE [k]
%************************************************************************
%* *
\subsection{Adding inline pragmas}
%* *
%************************************************************************
\begin{code}
decomposeRuleLhs :: [Var] -> CoreExpr -> Either SDoc ([Var], Id, [CoreExpr])
decomposeRuleLhs bndrs lhs
=
case collectArgs opt_lhs of
(Var fn, args) -> check_bndrs fn args
(Case scrut bndr ty [(DEFAULT, _, body)], args)
| isDeadBinder bndr
-> check_bndrs seqId (args' ++ args)
where
args' = [Type (idType bndr), Type ty, scrut, body]
_other -> Left bad_shape_msg
where
opt_lhs = simpleOptExpr lhs
check_bndrs fn args
| null dead_bndrs = Right (extra_dict_bndrs ++ bndrs, fn, args)
| otherwise = Left (vcat (map dead_msg dead_bndrs))
where
arg_fvs = exprsFreeVars args
dead_bndrs = filterOut (`elemVarSet` arg_fvs) bndrs
extra_dict_bndrs = [ mkLocalId (localiseName (idName d)) (idType d)
| d <- varSetElems (arg_fvs `delVarSetList` bndrs)
, isDictId d]
bad_shape_msg = hang (ptext (sLit "RULE left-hand side too complicated to desugar"))
2 (ppr opt_lhs)
dead_msg bndr = hang (sep [ ptext (sLit "Forall'd") <+> pp_bndr bndr
, ptext (sLit "is not bound in RULE lhs")])
2 (ppr opt_lhs)
pp_bndr bndr
| isTyVar bndr = ptext (sLit "type variable") <+> quotes (ppr bndr)
| Just pred <- evVarPred_maybe bndr = ptext (sLit "constraint") <+> quotes (ppr pred)
| otherwise = ptext (sLit "variable") <+> quotes (ppr bndr)
\end{code}
Note [Simplifying the left-hand side of a RULE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
simpleOptExpr occurrence-analyses and simplifies the lhs
and thereby
(a) sorts dict bindings into NonRecs and inlines them
(b) substitute trivial lets so that they don't get in the way
Note that we substitute the function too; we might
have this as a LHS: let f71 = M.f Int in f71
(c) does eta reduction
For (c) consider the fold/build rule, which without simplification
looked like:
fold k z (build (/\a. g a)) ==> ...
This doesn't match unless you do eta reduction on the build argument.
Similarly for a LHS like
augment g (build h)
we do not want to get
augment (\a. g a) (build h)
otherwise we don't match when given an argument like
augment (\a. h a a) (build h)
NB: tcSimplifyRuleLhs is very careful not to generate complicated
dictionary expressions that we might have to match
Note [Matching seqId]
~~~~~~~~~~~~~~~~~~~
The desugarer turns (seq e r) into (case e of _ -> r), via a special-case hack
and this code turns it back into an application of seq!
See Note [Rules for seq] in MkId for the details.
Note [Unused spec binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
f :: a -> a
{-# SPECIALISE f :: Eq a => a -> a #-}
It's true that this *is* a more specialised type, but the rule
we get is something like this:
f_spec d = f
RULE: f = f_spec d
Note that the rule is bogus, because it mentions a 'd' that is
not bound on the LHS! But it's a silly specialisation anyway, because
the constraint is unused. We could bind 'd' to (error "unused")
but it seems better to reject the program because it's almost certainly
a mistake. That's what the isDeadBinder call detects.
Note [Constant rule dicts]
~~~~~~~~~~~~~~~~~~~~~~~~~~
When the LHS of a specialisation rule, (/\as\ds. f es) has a free dict,
which is presumably in scope at the function definition site, we can quantify
over it too. *Any* dict with that type will do.
So for example when you have
f :: Eq a => a -> a
f =
{-# SPECIALISE f :: Int -> Int #-}
Then we get the SpecPrag
SpecPrag (f Int dInt)
And from that we want the rule
RULE forall dInt. f Int dInt = f_spec
f_spec = let f = in f Int dInt
But be careful! That dInt might be GHC.Base.$fOrdInt, which is an External
Name, and you can't bind them in a lambda or forall without getting things
confused. Likewise it might have an InlineRule or something, which would be
utterly bogus. So we really make a fresh Id, with the same unique and type
as the old one, but with an Internal name and no IdInfo.
%************************************************************************
%* *
Desugaring evidence
%* *
%************************************************************************
\begin{code}
dsHsWrapper :: HsWrapper -> CoreExpr -> DsM CoreExpr
dsHsWrapper WpHole e = return e
dsHsWrapper (WpTyApp ty) e = return $ App e (Type ty)
dsHsWrapper (WpLet ev_binds) e = do bs <- dsTcEvBinds ev_binds
return (mkCoreLets bs e)
dsHsWrapper (WpCompose c1 c2) e = dsHsWrapper c1 =<< dsHsWrapper c2 e
dsHsWrapper (WpCast co) e = dsTcCoercion Representational co (mkCast e)
dsHsWrapper (WpEvLam ev) e = return $ Lam ev e
dsHsWrapper (WpTyLam tv) e = return $ Lam tv e
dsHsWrapper (WpEvApp evtrm) e = liftM (App e) (dsEvTerm evtrm)
dsTcEvBinds :: TcEvBinds -> DsM [CoreBind]
dsTcEvBinds (TcEvBinds {}) = panic "dsEvBinds"
dsTcEvBinds (EvBinds bs) = dsEvBinds bs
dsEvBinds :: Bag EvBind -> DsM [CoreBind]
dsEvBinds bs = mapM ds_scc (sccEvBinds bs)
where
ds_scc (AcyclicSCC (EvBind v r)) = liftM (NonRec v) (dsEvTerm r)
ds_scc (CyclicSCC bs) = liftM Rec (mapM ds_pair bs)
ds_pair (EvBind v r) = liftM ((,) v) (dsEvTerm r)
sccEvBinds :: Bag EvBind -> [SCC EvBind]
sccEvBinds bs = stronglyConnCompFromEdgedVertices edges
where
edges :: [(EvBind, EvVar, [EvVar])]
edges = foldrBag ((:) . mk_node) [] bs
mk_node :: EvBind -> (EvBind, EvVar, [EvVar])
mk_node b@(EvBind var term) = (b, var, varSetElems (evVarsOfTerm term))
dsEvTerm :: EvTerm -> DsM CoreExpr
dsEvTerm (EvId v) = return (Var v)
dsEvTerm (EvCast tm co)
= do { tm' <- dsEvTerm tm
; dsTcCoercion Representational co $ mkCast tm' }
dsEvTerm (EvDFunApp df tys tms) = do { tms' <- mapM dsEvTerm tms
; return (Var df `mkTyApps` tys `mkApps` tms') }
dsEvTerm (EvCoercion (TcCoVarCo v)) = return (Var v)
dsEvTerm (EvCoercion co) = dsTcCoercion Nominal co mkEqBox
dsEvTerm (EvTupleSel v n)
= do { tm' <- dsEvTerm v
; let scrut_ty = exprType tm'
(tc, tys) = splitTyConApp scrut_ty
Just [dc] = tyConDataCons_maybe tc
xs = mkTemplateLocals tys
the_x = getNth xs n
; ASSERT( isTupleTyCon tc )
return $
Case tm' (mkWildValBinder scrut_ty) (idType the_x) [(DataAlt dc, xs, Var the_x)] }
dsEvTerm (EvTupleMk tms)
= do { tms' <- mapM dsEvTerm tms
; let tys = map exprType tms'
; return $ Var (dataConWorkId dc) `mkTyApps` tys `mkApps` tms' }
where
dc = tupleCon ConstraintTuple (length tms)
dsEvTerm (EvSuperClass d n)
= do { d' <- dsEvTerm d
; let (cls, tys) = getClassPredTys (exprType d')
sc_sel_id = classSCSelId cls n
; return $ Var sc_sel_id `mkTyApps` tys `App` d' }
where
dsEvTerm (EvDelayedError ty msg) = return $ Var errorId `mkTyApps` [ty] `mkApps` [litMsg]
where
errorId = rUNTIME_ERROR_ID
litMsg = Lit (MachStr (fastStringToByteString msg))
dsEvTerm (EvLit l) =
case l of
EvNum n -> mkIntegerExpr n
EvStr s -> mkStringExprFS s
dsTcCoercion :: Role -> TcCoercion -> (Coercion -> CoreExpr) -> DsM CoreExpr
dsTcCoercion role co thing_inside
= do { us <- newUniqueSupply
; let eqvs_covs :: [(EqVar,CoVar)]
eqvs_covs = zipWith mk_co_var (varSetElems (coVarsOfTcCo co))
(uniqsFromSupply us)
subst = mkCvSubst emptyInScopeSet [(eqv, mkCoVarCo cov) | (eqv, cov) <- eqvs_covs]
result_expr = thing_inside (ds_tc_coercion subst role co)
result_ty = exprType result_expr
; return (foldr (wrap_in_case result_ty) result_expr eqvs_covs) }
where
mk_co_var :: Id -> Unique -> (Id, Id)
mk_co_var eqv uniq = (eqv, mkUserLocal occ uniq ty loc)
where
eq_nm = idName eqv
occ = nameOccName eq_nm
loc = nameSrcSpan eq_nm
ty = mkCoercionType Nominal ty1 ty2
(ty1, ty2) = getEqPredTys (evVarPred eqv)
wrap_in_case result_ty (eqv, cov) body
= Case (Var eqv) eqv result_ty [(DataAlt eqBoxDataCon, [cov], body)]
ds_tc_coercion :: CvSubst -> Role -> TcCoercion -> Coercion
ds_tc_coercion subst role tc_co
= go role tc_co
where
go Phantom co
= mkUnivCo Phantom ty1 ty2
where Pair ty1 ty2 = tcCoercionKind co
go r (TcRefl ty) = Refl r (Coercion.substTy subst ty)
go r (TcTyConAppCo tc cos) = mkTyConAppCo r tc (zipWith go (tyConRolesX r tc) cos)
go r (TcAppCo co1 co2) = mkAppCo (go r co1) (go Nominal co2)
go r (TcForAllCo tv co) = mkForAllCo tv' (ds_tc_coercion subst' r co)
where
(subst', tv') = Coercion.substTyVarBndr subst tv
go r (TcAxiomInstCo ax ind tys)
= mkAxInstCo r ax ind (map (Coercion.substTy subst) tys)
go r (TcSymCo co) = mkSymCo (go r co)
go r (TcTransCo co1 co2) = mkTransCo (go r co1) (go r co2)
go r (TcNthCo n co) = mkNthCoRole r n (go r co)
go r (TcLRCo lr co) = maybeSubCo r $ mkLRCo lr (go Nominal co)
go r (TcInstCo co ty) = mkInstCo (go r co) ty
go r (TcLetCo bs co) = ds_tc_coercion (ds_co_binds bs) r co
go r (TcCastCo co1 co2) = maybeSubCo r $ mkCoCast (go Nominal co1)
(go Nominal co2)
go r (TcCoVarCo v) = maybeSubCo r $ ds_ev_id subst v
ds_co_binds :: TcEvBinds -> CvSubst
ds_co_binds (EvBinds bs) = foldl ds_scc subst (sccEvBinds bs)
ds_co_binds eb@(TcEvBinds {}) = pprPanic "ds_co_binds" (ppr eb)
ds_scc :: CvSubst -> SCC EvBind -> CvSubst
ds_scc subst (AcyclicSCC (EvBind v ev_term))
= extendCvSubstAndInScope subst v (ds_co_term subst ev_term)
ds_scc _ (CyclicSCC other) = pprPanic "ds_scc:cyclic" (ppr other $$ ppr tc_co)
ds_co_term :: CvSubst -> EvTerm -> Coercion
ds_co_term subst (EvCoercion tc_co) = ds_tc_coercion subst Nominal tc_co
ds_co_term subst (EvId v) = ds_ev_id subst v
ds_co_term subst (EvCast tm co) = mkCoCast (ds_co_term subst tm) (ds_tc_coercion subst Nominal co)
ds_co_term _ other = pprPanic "ds_co_term" (ppr other $$ ppr tc_co)
ds_ev_id :: CvSubst -> EqVar -> Coercion
ds_ev_id subst v
| Just co <- Coercion.lookupCoVar subst v = co
| otherwise = pprPanic "ds_tc_coercion" (ppr v $$ ppr tc_co)
\end{code}
Note [Simple coercions]
~~~~~~~~~~~~~~~~~~~~~~~
We have a special case for coercions that are simple variables.
Suppose cv :: a ~ b is in scope
Lacking the special case, if we see
f a b cv
we'd desguar to
f a b (case cv of EqBox (cv# :: a ~# b) -> EqBox cv#)
which is a bit stupid. The special case does the obvious thing.
This turns out to be important when desugaring the LHS of a RULE
(see Trac #7837). Suppose we have
normalise :: (a ~ Scalar a) => a -> a
normalise_Double :: Double -> Double
{-# RULES "normalise" normalise = normalise_Double #-}
Then the RULE we want looks like
forall a, (cv:a~Scalar a).
normalise a cv = normalise_Double
But without the special case we generate the redundant box/unbox,
which simpleOpt (currently) doesn't remove. So the rule never matches.
Maybe simpleOpt should be smarter. But it seems like a good plan
to simply never generate the redundant box/unbox in the first place.