%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\begin{code}
module CoreSyn (
Expr(..), Alt, Bind(..), AltCon(..), Arg, Tickish(..),
CoreProgram, CoreExpr, CoreAlt, CoreBind, CoreArg, CoreBndr,
TaggedExpr, TaggedAlt, TaggedBind, TaggedArg, TaggedBndr(..),
mkLets, mkLams,
mkApps, mkTyApps, mkCoApps, mkVarApps,
mkIntLit, mkIntLitInt,
mkWordLit, mkWordLitWord,
mkWord64LitWord64, mkInt64LitInt64,
mkCharLit, mkStringLit,
mkFloatLit, mkFloatLitFloat,
mkDoubleLit, mkDoubleLitDouble,
mkConApp, mkConApp2, mkTyBind, mkCoBind,
varToCoreExpr, varsToCoreExprs,
isId, cmpAltCon, cmpAlt, ltAlt,
bindersOf, bindersOfBinds, rhssOfBind, rhssOfAlts,
collectBinders, collectTyBinders, collectValBinders, collectTyAndValBinders,
collectArgs, flattenBinds,
isValArg, isTypeArg, isTyCoArg, valArgCount, valBndrCount,
isRuntimeArg, isRuntimeVar,
tickishCounts, tickishScoped, tickishIsCode, mkNoTick, mkNoScope,
tickishCanSplit,
Unfolding(..), UnfoldingGuidance(..), UnfoldingSource(..),
noUnfolding, evaldUnfolding, mkOtherCon,
unSaturatedOk, needSaturated, boringCxtOk, boringCxtNotOk,
unfoldingTemplate, setUnfoldingTemplate, expandUnfolding_maybe,
maybeUnfoldingTemplate, otherCons, unfoldingArity,
isValueUnfolding, isEvaldUnfolding, isCheapUnfolding,
isExpandableUnfolding, isConLikeUnfolding, isCompulsoryUnfolding,
isStableUnfolding, isStableCoreUnfolding_maybe,
isClosedUnfolding, hasSomeUnfolding,
canUnfold, neverUnfoldGuidance, isStableSource,
seqExpr, seqExprs, seqUnfolding,
AnnExpr, AnnExpr'(..), AnnBind(..), AnnAlt,
collectAnnArgs,
deAnnotate, deAnnotate', deAnnAlt, collectAnnBndrs,
CoreRule(..),
RuleName, RuleFun, IdUnfoldingFun, InScopeEnv,
seqRules, ruleArity, ruleName, ruleIdName, ruleActivation,
setRuleIdName,
isBuiltinRule, isLocalRule,
CoreVect(..)
) where
#include "HsVersions.h"
import CostCentre
import VarEnv( InScopeSet )
import Var
import Type
import Coercion
import Name
import Literal
import DataCon
import Module
import TyCon
import BasicTypes
import DynFlags
import FastString
import Outputable
import Util
import Data.Data hiding (TyCon)
import Data.Int
import Data.Word
infixl 4 `mkApps`, `mkTyApps`, `mkVarApps`, `App`, `mkCoApps`
\end{code}
%************************************************************************
%* *
\subsection{The main data types}
%* *
%************************************************************************
These data types are the heart of the compiler
\begin{code}
data Expr b
= Var Id
| Lit Literal
| App (Expr b) (Arg b)
| Lam b (Expr b)
| Let (Bind b) (Expr b)
| Case (Expr b) b Type [Alt b]
| Cast (Expr b) Coercion
| Tick (Tickish Id) (Expr b)
| Type Type
| Coercion Coercion
deriving (Data, Typeable)
type Arg b = Expr b
type Alt b = (AltCon, [b], Expr b)
data AltCon
= DataAlt DataCon
| LitAlt Literal
| DEFAULT
deriving (Eq, Ord, Data, Typeable)
data Bind b = NonRec b (Expr b)
| Rec [(b, (Expr b))]
deriving (Data, Typeable)
\end{code}
Note [Shadowing]
~~~~~~~~~~~~~~~~
While various passes attempt to rename on-the-fly in a manner that
avoids "shadowing" (thereby simplifying downstream optimizations),
neither the simplifier nor any other pass GUARANTEES that shadowing is
avoided. Thus, all passes SHOULD work fine even in the presence of
arbitrary shadowing in their inputs.
In particular, scrutinee variables `x` in expressions of the form
`Case e x t` are often renamed to variables with a prefix
"wild_". These "wild" variables may appear in the body of the
case-expression, and further, may be shadowed within the body.
So the Unique in an Var is not really unique at all. Still, it's very
useful to give a constant-time equality/ordering for Vars, and to give
a key that can be used to make sets of Vars (VarSet), or mappings from
Vars to other things (VarEnv). Moreover, if you do want to eliminate
shadowing, you can give a new Unique to an Id without changing its
printable name, which makes debugging easier.
Note [Literal alternatives]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Literal alternatives (LitAlt lit) are always for *un-lifted* literals.
We have one literal, a literal Integer, that is lifted, and we don't
allow in a LitAlt, because LitAlt cases don't do any evaluation. Also
(see Trac #5603) if you say
case 3 of
S# x -> ...
J# _ _ -> ...
(where S#, J# are the constructors for Integer) we don't want the
simplifier calling findAlt with argument (LitAlt 3). No no. Integer
literals are an opaque encoding of an algebraic data type, not of
an unlifted literal, like all the others.
-------------------------- CoreSyn INVARIANTS ---------------------------
Note [CoreSyn top-level invariant]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See #toplevel_invariant#
Note [CoreSyn letrec invariant]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See #letrec_invariant#
Note [CoreSyn let/app invariant]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See #let_app_invariant#
This is intially enforced by DsUtils.mkCoreLet and mkCoreApp
Note [CoreSyn case invariants]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See #case_invariants#
Note [CoreSyn let goal]
~~~~~~~~~~~~~~~~~~~~~~~
* The simplifier tries to ensure that if the RHS of a let is a constructor
application, its arguments are trivial, so that the constructor can be
inlined vigorously.
Note [Type let]
~~~~~~~~~~~~~~~
See #type_let#
Note [Empty case alternatives]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The alternatives of a case expression should be exhaustive. A case expression
can have empty alternatives if (and only if) the scrutinee is bound to raise
an exception or diverge. So:
Case (error Int "Hello") b Bool []
is fine, and has type Bool. This is one reason we need a type on
the case expression: if the alternatives are empty we can't get the type
from the alternatives! I'll write this
case (error Int "Hello") of Bool {}
with the return type just before the alterantives.
Here's another example:
data T
f :: T -> Bool
f = \(x:t). case x of Bool {}
Since T has no data constructors, the case alterantives are of course
empty. However note that 'x' is not bound to a visbily-bottom value;
it's the *type* that tells us it's going to diverge. Its a bit of a
degnerate situation but we do NOT want to replace
case x of Bool {} --> error Bool "Inaccessible case"
because x might raise an exception, and *that*'s what we want to see!
(Trac #6067 is an example.) To preserve semantics we'd have to say
x `seq` error Bool "Inaccessible case"
but the 'seq' is just a case, so we are back to square 1. Or I suppose
we could say
x |> UnsafeCoerce T Bool
but that loses all trace of the fact that this originated with an empty
set of alternatives.
We can use the empty-alternative construct to coerce error values from
one type to another. For example
f :: Int -> Int
f n = error "urk"
g :: Int -> (# Char, Bool #)
g x = case f x of { 0 -> ..., n -> ... }
Then if we inline f in g's RHS we get
case (error Int "urk") of (# Char, Bool #) { ... }
and we can discard the alternatives since the scrutinee is bottom to give
case (error Int "urk") of (# Char, Bool #) {}
This is nicer than using an unsafe coerce between Int ~ (# Char,Bool #),
if for no other reason that we don't need to instantiate the (~) at an
unboxed type.
%************************************************************************
%* *
Ticks
%* *
%************************************************************************
\begin{code}
data Tickish id =
ProfNote {
profNoteCC :: CostCentre,
profNoteCount :: !Bool,
profNoteScope :: !Bool
}
| HpcTick {
tickModule :: Module,
tickId :: !Int
}
| Breakpoint
{ breakpointId :: !Int
, breakpointFVs :: [id]
}
deriving (Eq, Ord, Data, Typeable)
tickishCounts :: Tickish id -> Bool
tickishCounts n@ProfNote{} = profNoteCount n
tickishCounts HpcTick{} = True
tickishCounts Breakpoint{} = True
tickishScoped :: Tickish id -> Bool
tickishScoped n@ProfNote{} = profNoteScope n
tickishScoped HpcTick{} = False
tickishScoped Breakpoint{} = True
mkNoTick :: Tickish id -> Tickish id
mkNoTick n@ProfNote{} = n {profNoteCount = False}
mkNoTick Breakpoint{} = panic "mkNoTick: Breakpoint"
mkNoTick t = t
mkNoScope :: Tickish id -> Tickish id
mkNoScope n@ProfNote{} = n {profNoteScope = False}
mkNoScope Breakpoint{} = panic "mkNoScope: Breakpoint"
mkNoScope t = t
tickishIsCode :: Tickish id -> Bool
tickishIsCode _tickish = True
tickishCanSplit :: Tickish Id -> Bool
tickishCanSplit Breakpoint{} = False
tickishCanSplit _ = True
\end{code}
%************************************************************************
%* *
\subsection{Transformation rules}
%* *
%************************************************************************
The CoreRule type and its friends are dealt with mainly in CoreRules,
but CoreFVs, Subst, PprCore, CoreTidy also inspect the representation.
\begin{code}
data CoreRule
= Rule {
ru_name :: RuleName,
ru_act :: Activation,
ru_fn :: Name,
ru_rough :: [Maybe Name],
ru_bndrs :: [CoreBndr],
ru_args :: [CoreExpr],
ru_rhs :: CoreExpr,
ru_auto :: Bool,
ru_local :: Bool
}
| BuiltinRule {
ru_name :: RuleName,
ru_fn :: Name,
ru_nargs :: Int,
ru_try :: RuleFun
}
type RuleFun = DynFlags -> InScopeEnv -> Id -> [CoreExpr] -> Maybe CoreExpr
type InScopeEnv = (InScopeSet, IdUnfoldingFun)
type IdUnfoldingFun = Id -> Unfolding
isBuiltinRule :: CoreRule -> Bool
isBuiltinRule (BuiltinRule {}) = True
isBuiltinRule _ = False
ruleArity :: CoreRule -> Int
ruleArity (BuiltinRule {ru_nargs = n}) = n
ruleArity (Rule {ru_args = args}) = length args
ruleName :: CoreRule -> RuleName
ruleName = ru_name
ruleActivation :: CoreRule -> Activation
ruleActivation (BuiltinRule { }) = AlwaysActive
ruleActivation (Rule { ru_act = act }) = act
ruleIdName :: CoreRule -> Name
ruleIdName = ru_fn
isLocalRule :: CoreRule -> Bool
isLocalRule = ru_local
setRuleIdName :: Name -> CoreRule -> CoreRule
setRuleIdName nm ru = ru { ru_fn = nm }
\end{code}
%************************************************************************
%* *
\subsection{Vectorisation declarations}
%* *
%************************************************************************
Representation of desugared vectorisation declarations that are fed to the vectoriser (via
'ModGuts').
\begin{code}
data CoreVect = Vect Id CoreExpr
| NoVect Id
| VectType Bool TyCon (Maybe TyCon)
| VectClass TyCon
| VectInst Id
\end{code}
%************************************************************************
%* *
Unfoldings
%* *
%************************************************************************
The @Unfolding@ type is declared here to avoid numerous loops
\begin{code}
data Unfolding
= NoUnfolding
| OtherCon [AltCon]
| DFunUnfolding {
df_bndrs :: [Var],
df_con :: DataCon,
df_args :: [CoreExpr]
}
| CoreUnfolding {
uf_tmpl :: CoreExpr,
uf_src :: UnfoldingSource,
uf_is_top :: Bool,
uf_arity :: Arity,
uf_is_value :: Bool,
uf_is_conlike :: Bool,
uf_is_work_free :: Bool,
uf_expandable :: Bool,
uf_guidance :: UnfoldingGuidance
}
data UnfoldingSource
= InlineRhs
| InlineStable
| InlineCompulsory
| InlineWrapper Id
data UnfoldingGuidance
= UnfWhen {
ug_unsat_ok :: Bool,
ug_boring_ok :: Bool
}
| UnfIfGoodArgs {
ug_args :: [Int],
ug_size :: Int,
ug_res :: Int
}
| UnfNever
\end{code}
Note [DFun unfoldings]
~~~~~~~~~~~~~~~~~~~~~~
The Arity in a DFunUnfolding is total number of args (type and value)
that the DFun needs to produce a dictionary. That's not necessarily
related to the ordinary arity of the dfun Id, esp if the class has
one method, so the dictionary is represented by a newtype. Example
class C a where { op :: a -> Int }
instance C a -> C [a] where op xs = op (head xs)
The instance translates to
$dfCList :: forall a. C a => C [a] -- Arity 2!
$dfCList = /\a.\d. $copList {a} d |> co
$copList :: forall a. C a => [a] -> Int -- Arity 2!
$copList = /\a.\d.\xs. op {a} d (head xs)
Now we might encounter (op (dfCList {ty} d) a1 a2)
and we want the (op (dfList {ty} d)) rule to fire, because $dfCList
has all its arguments, even though its (value) arity is 2. That's
why we record the number of expected arguments in the DFunUnfolding.
Note that although it's an Arity, it's most convenient for it to give
the *total* number of arguments, both type and value. See the use
site in exprIsConApp_maybe.
\begin{code}
needSaturated, unSaturatedOk :: Bool
needSaturated = False
unSaturatedOk = True
boringCxtNotOk, boringCxtOk :: Bool
boringCxtOk = True
boringCxtNotOk = False
noUnfolding :: Unfolding
evaldUnfolding :: Unfolding
noUnfolding = NoUnfolding
evaldUnfolding = OtherCon []
mkOtherCon :: [AltCon] -> Unfolding
mkOtherCon = OtherCon
seqUnfolding :: Unfolding -> ()
seqUnfolding (CoreUnfolding { uf_tmpl = e, uf_is_top = top,
uf_is_value = b1, uf_is_work_free = b2,
uf_expandable = b3, uf_is_conlike = b4,
uf_arity = a, uf_guidance = g})
= seqExpr e `seq` top `seq` b1 `seq` a `seq` b2 `seq` b3 `seq` b4 `seq` seqGuidance g
seqUnfolding _ = ()
seqGuidance :: UnfoldingGuidance -> ()
seqGuidance (UnfIfGoodArgs ns n b) = n `seq` sum ns `seq` b `seq` ()
seqGuidance _ = ()
\end{code}
\begin{code}
isStableSource :: UnfoldingSource -> Bool
isStableSource InlineCompulsory = True
isStableSource InlineStable = True
isStableSource (InlineWrapper {}) = True
isStableSource InlineRhs = False
unfoldingTemplate :: Unfolding -> CoreExpr
unfoldingTemplate = uf_tmpl
setUnfoldingTemplate :: Unfolding -> CoreExpr -> Unfolding
setUnfoldingTemplate unf rhs = unf { uf_tmpl = rhs }
maybeUnfoldingTemplate :: Unfolding -> Maybe CoreExpr
maybeUnfoldingTemplate (CoreUnfolding { uf_tmpl = expr }) = Just expr
maybeUnfoldingTemplate _ = Nothing
otherCons :: Unfolding -> [AltCon]
otherCons (OtherCon cons) = cons
otherCons _ = []
isValueUnfolding :: Unfolding -> Bool
isValueUnfolding (CoreUnfolding { uf_is_value = is_evald }) = is_evald
isValueUnfolding _ = False
isEvaldUnfolding :: Unfolding -> Bool
isEvaldUnfolding (OtherCon _) = True
isEvaldUnfolding (CoreUnfolding { uf_is_value = is_evald }) = is_evald
isEvaldUnfolding _ = False
isConLikeUnfolding :: Unfolding -> Bool
isConLikeUnfolding (OtherCon _) = True
isConLikeUnfolding (CoreUnfolding { uf_is_conlike = con }) = con
isConLikeUnfolding _ = False
isCheapUnfolding :: Unfolding -> Bool
isCheapUnfolding (CoreUnfolding { uf_is_work_free = is_wf }) = is_wf
isCheapUnfolding _ = False
isExpandableUnfolding :: Unfolding -> Bool
isExpandableUnfolding (CoreUnfolding { uf_expandable = is_expable }) = is_expable
isExpandableUnfolding _ = False
expandUnfolding_maybe :: Unfolding -> Maybe CoreExpr
expandUnfolding_maybe (CoreUnfolding { uf_expandable = True, uf_tmpl = rhs }) = Just rhs
expandUnfolding_maybe _ = Nothing
isStableCoreUnfolding_maybe :: Unfolding -> Maybe UnfoldingSource
isStableCoreUnfolding_maybe (CoreUnfolding { uf_src = src })
| isStableSource src = Just src
isStableCoreUnfolding_maybe _ = Nothing
isCompulsoryUnfolding :: Unfolding -> Bool
isCompulsoryUnfolding (CoreUnfolding { uf_src = InlineCompulsory }) = True
isCompulsoryUnfolding _ = False
isStableUnfolding :: Unfolding -> Bool
isStableUnfolding (CoreUnfolding { uf_src = src }) = isStableSource src
isStableUnfolding (DFunUnfolding {}) = True
isStableUnfolding _ = False
unfoldingArity :: Unfolding -> Arity
unfoldingArity (CoreUnfolding { uf_arity = arity }) = arity
unfoldingArity _ = panic "unfoldingArity"
isClosedUnfolding :: Unfolding -> Bool
isClosedUnfolding (CoreUnfolding {}) = False
isClosedUnfolding (DFunUnfolding {}) = False
isClosedUnfolding _ = True
hasSomeUnfolding :: Unfolding -> Bool
hasSomeUnfolding NoUnfolding = False
hasSomeUnfolding _ = True
neverUnfoldGuidance :: UnfoldingGuidance -> Bool
neverUnfoldGuidance UnfNever = True
neverUnfoldGuidance _ = False
canUnfold :: Unfolding -> Bool
canUnfold (CoreUnfolding { uf_guidance = g }) = not (neverUnfoldGuidance g)
canUnfold _ = False
\end{code}
Note [InlineRules]
~~~~~~~~~~~~~~~~~
When you say
{-# INLINE f #-}
f x =
you intend that calls (f e) are replaced by [e/x] So we
should capture (\x.) in the Unfolding of 'f', and never meddle
with it. Meanwhile, we can optimise to our heart's content,
leaving the original unfolding intact in Unfolding of 'f'. For example
all xs = foldr (&&) True xs
any p = all . map p {-# INLINE any #-}
We optimise any's RHS fully, but leave the InlineRule saying "all . map p",
which deforests well at the call site.
So INLINE pragma gives rise to an InlineRule, which captures the original RHS.
Moreover, it's only used when 'f' is applied to the
specified number of arguments; that is, the number of argument on
the LHS of the '=' sign in the original source definition.
For example, (.) is now defined in the libraries like this
{-# INLINE (.) #-}
(.) f g = \x -> f (g x)
so that it'll inline when applied to two arguments. If 'x' appeared
on the left, thus
(.) f g x = f (g x)
it'd only inline when applied to three arguments. This slightly-experimental
change was requested by Roman, but it seems to make sense.
See also Note [Inlining an InlineRule] in CoreUnfold.
Note [OccInfo in unfoldings and rules]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In unfoldings and rules, we guarantee that the template is occ-analysed,
so that the occurence info on the binders is correct. This is important,
because the Simplifier does not re-analyse the template when using it. If
the occurrence info is wrong
- We may get more simpifier iterations than necessary, because
once-occ info isn't there
- More seriously, we may get an infinite loop if there's a Rec
without a loop breaker marked
%************************************************************************
%* *
AltCon
%* *
%************************************************************************
\begin{code}
instance Outputable AltCon where
ppr (DataAlt dc) = ppr dc
ppr (LitAlt lit) = ppr lit
ppr DEFAULT = ptext (sLit "__DEFAULT")
cmpAlt :: (AltCon, a, b) -> (AltCon, a, b) -> Ordering
cmpAlt (con1, _, _) (con2, _, _) = con1 `cmpAltCon` con2
ltAlt :: (AltCon, a, b) -> (AltCon, a, b) -> Bool
ltAlt a1 a2 = (a1 `cmpAlt` a2) == LT
cmpAltCon :: AltCon -> AltCon -> Ordering
cmpAltCon DEFAULT DEFAULT = EQ
cmpAltCon DEFAULT _ = LT
cmpAltCon (DataAlt d1) (DataAlt d2) = dataConTag d1 `compare` dataConTag d2
cmpAltCon (DataAlt _) DEFAULT = GT
cmpAltCon (LitAlt l1) (LitAlt l2) = l1 `compare` l2
cmpAltCon (LitAlt _) DEFAULT = GT
cmpAltCon con1 con2 = WARN( True, text "Comparing incomparable AltCons" <+>
ppr con1 <+> ppr con2 )
LT
\end{code}
%************************************************************************
%* *
\subsection{Useful synonyms}
%* *
%************************************************************************
Note [CoreProgram]
~~~~~~~~~~~~~~~~~~
The top level bindings of a program, a CoreProgram, are represented as
a list of CoreBind
* Later bindings in the list can refer to earlier ones, but not vice
versa. So this is OK
NonRec { x = 4 }
Rec { p = ...q...x...
; q = ...p...x }
Rec { f = ...p..x..f.. }
NonRec { g = ..f..q...x.. }
But it would NOT be ok for 'f' to refer to 'g'.
* The occurrence analyser does strongly-connected component analysis
on each Rec binding, and splits it into a sequence of smaller
bindings where possible. So the program typically starts life as a
single giant Rec, which is then dependency-analysed into smaller
chunks.
\begin{code}
type CoreProgram = [CoreBind]
type CoreBndr = Var
type CoreExpr = Expr CoreBndr
type CoreArg = Arg CoreBndr
type CoreBind = Bind CoreBndr
type CoreAlt = Alt CoreBndr
\end{code}
%************************************************************************
%* *
\subsection{Tagging}
%* *
%************************************************************************
\begin{code}
data TaggedBndr t = TB CoreBndr t
type TaggedBind t = Bind (TaggedBndr t)
type TaggedExpr t = Expr (TaggedBndr t)
type TaggedArg t = Arg (TaggedBndr t)
type TaggedAlt t = Alt (TaggedBndr t)
instance Outputable b => Outputable (TaggedBndr b) where
ppr (TB b l) = char '<' <> ppr b <> comma <> ppr l <> char '>'
instance Outputable b => OutputableBndr (TaggedBndr b) where
pprBndr _ b = ppr b
pprInfixOcc b = ppr b
pprPrefixOcc b = ppr b
\end{code}
%************************************************************************
%* *
\subsection{Core-constructing functions with checking}
%* *
%************************************************************************
\begin{code}
mkApps :: Expr b -> [Arg b] -> Expr b
mkTyApps :: Expr b -> [Type] -> Expr b
mkCoApps :: Expr b -> [Coercion] -> Expr b
mkVarApps :: Expr b -> [Var] -> Expr b
mkConApp :: DataCon -> [Arg b] -> Expr b
mkApps f args = foldl App f args
mkTyApps f args = foldl (\ e a -> App e (Type a)) f args
mkCoApps f args = foldl (\ e a -> App e (Coercion a)) f args
mkVarApps f vars = foldl (\ e a -> App e (varToCoreExpr a)) f vars
mkConApp con args = mkApps (Var (dataConWorkId con)) args
mkConApp2 :: DataCon -> [Type] -> [Var] -> Expr b
mkConApp2 con tys arg_ids = Var (dataConWorkId con)
`mkApps` map Type tys
`mkApps` map varToCoreExpr arg_ids
mkIntLit :: DynFlags -> Integer -> Expr b
mkIntLitInt :: DynFlags -> Int -> Expr b
mkIntLit dflags n = Lit (mkMachInt dflags n)
mkIntLitInt dflags n = Lit (mkMachInt dflags (toInteger n))
mkWordLit :: DynFlags -> Integer -> Expr b
mkWordLitWord :: DynFlags -> Word -> Expr b
mkWordLit dflags w = Lit (mkMachWord dflags w)
mkWordLitWord dflags w = Lit (mkMachWord dflags (toInteger w))
mkWord64LitWord64 :: Word64 -> Expr b
mkWord64LitWord64 w = Lit (mkMachWord64 (toInteger w))
mkInt64LitInt64 :: Int64 -> Expr b
mkInt64LitInt64 w = Lit (mkMachInt64 (toInteger w))
mkCharLit :: Char -> Expr b
mkStringLit :: String -> Expr b
mkCharLit c = Lit (mkMachChar c)
mkStringLit s = Lit (mkMachString s)
mkFloatLit :: Rational -> Expr b
mkFloatLitFloat :: Float -> Expr b
mkFloatLit f = Lit (mkMachFloat f)
mkFloatLitFloat f = Lit (mkMachFloat (toRational f))
mkDoubleLit :: Rational -> Expr b
mkDoubleLitDouble :: Double -> Expr b
mkDoubleLit d = Lit (mkMachDouble d)
mkDoubleLitDouble d = Lit (mkMachDouble (toRational d))
mkLets :: [Bind b] -> Expr b -> Expr b
mkLams :: [b] -> Expr b -> Expr b
mkLams binders body = foldr Lam body binders
mkLets binds body = foldr Let body binds
mkTyBind :: TyVar -> Type -> CoreBind
mkTyBind tv ty = NonRec tv (Type ty)
mkCoBind :: CoVar -> Coercion -> CoreBind
mkCoBind cv co = NonRec cv (Coercion co)
varToCoreExpr :: CoreBndr -> Expr b
varToCoreExpr v | isTyVar v = Type (mkTyVarTy v)
| isCoVar v = Coercion (mkCoVarCo v)
| otherwise = ASSERT( isId v ) Var v
varsToCoreExprs :: [CoreBndr] -> [Expr b]
varsToCoreExprs vs = map varToCoreExpr vs
\end{code}
%************************************************************************
%* *
\subsection{Simple access functions}
%* *
%************************************************************************
\begin{code}
bindersOf :: Bind b -> [b]
bindersOf (NonRec binder _) = [binder]
bindersOf (Rec pairs) = [binder | (binder, _) <- pairs]
bindersOfBinds :: [Bind b] -> [b]
bindersOfBinds binds = foldr ((++) . bindersOf) [] binds
rhssOfBind :: Bind b -> [Expr b]
rhssOfBind (NonRec _ rhs) = [rhs]
rhssOfBind (Rec pairs) = [rhs | (_,rhs) <- pairs]
rhssOfAlts :: [Alt b] -> [Expr b]
rhssOfAlts alts = [e | (_,_,e) <- alts]
flattenBinds :: [Bind b] -> [(b, Expr b)]
flattenBinds (NonRec b r : binds) = (b,r) : flattenBinds binds
flattenBinds (Rec prs1 : binds) = prs1 ++ flattenBinds binds
flattenBinds [] = []
\end{code}
\begin{code}
collectBinders :: Expr b -> ([b], Expr b)
collectTyBinders :: CoreExpr -> ([TyVar], CoreExpr)
collectValBinders :: CoreExpr -> ([Id], CoreExpr)
collectTyAndValBinders :: CoreExpr -> ([TyVar], [Id], CoreExpr)
collectBinders expr
= go [] expr
where
go bs (Lam b e) = go (b:bs) e
go bs e = (reverse bs, e)
collectTyAndValBinders expr
= (tvs, ids, body)
where
(tvs, body1) = collectTyBinders expr
(ids, body) = collectValBinders body1
collectTyBinders expr
= go [] expr
where
go tvs (Lam b e) | isTyVar b = go (b:tvs) e
go tvs e = (reverse tvs, e)
collectValBinders expr
= go [] expr
where
go ids (Lam b e) | isId b = go (b:ids) e
go ids body = (reverse ids, body)
\end{code}
\begin{code}
collectArgs :: Expr b -> (Expr b, [Arg b])
collectArgs expr
= go expr []
where
go (App f a) as = go f (a:as)
go e as = (e, as)
\end{code}
%************************************************************************
%* *
\subsection{Predicates}
%* *
%************************************************************************
At one time we optionally carried type arguments through to runtime.
@isRuntimeVar v@ returns if (Lam v _) really becomes a lambda at runtime,
i.e. if type applications are actual lambdas because types are kept around
at runtime. Similarly isRuntimeArg.
\begin{code}
isRuntimeVar :: Var -> Bool
isRuntimeVar = isId
isRuntimeArg :: CoreExpr -> Bool
isRuntimeArg = isValArg
isValArg :: Expr b -> Bool
isValArg e = not (isTypeArg e)
isTyCoArg :: Expr b -> Bool
isTyCoArg (Type {}) = True
isTyCoArg (Coercion {}) = True
isTyCoArg _ = False
isTypeArg :: Expr b -> Bool
isTypeArg (Type {}) = True
isTypeArg _ = False
valBndrCount :: [CoreBndr] -> Int
valBndrCount = count isId
valArgCount :: [Arg b] -> Int
valArgCount = count isValArg
\end{code}
%************************************************************************
%* *
\subsection{Seq stuff}
%* *
%************************************************************************
\begin{code}
seqExpr :: CoreExpr -> ()
seqExpr (Var v) = v `seq` ()
seqExpr (Lit lit) = lit `seq` ()
seqExpr (App f a) = seqExpr f `seq` seqExpr a
seqExpr (Lam b e) = seqBndr b `seq` seqExpr e
seqExpr (Let b e) = seqBind b `seq` seqExpr e
seqExpr (Case e b t as) = seqExpr e `seq` seqBndr b `seq` seqType t `seq` seqAlts as
seqExpr (Cast e co) = seqExpr e `seq` seqCo co
seqExpr (Tick n e) = seqTickish n `seq` seqExpr e
seqExpr (Type t) = seqType t
seqExpr (Coercion co) = seqCo co
seqExprs :: [CoreExpr] -> ()
seqExprs [] = ()
seqExprs (e:es) = seqExpr e `seq` seqExprs es
seqTickish :: Tickish Id -> ()
seqTickish ProfNote{ profNoteCC = cc } = cc `seq` ()
seqTickish HpcTick{} = ()
seqTickish Breakpoint{ breakpointFVs = ids } = seqBndrs ids
seqBndr :: CoreBndr -> ()
seqBndr b = b `seq` ()
seqBndrs :: [CoreBndr] -> ()
seqBndrs [] = ()
seqBndrs (b:bs) = seqBndr b `seq` seqBndrs bs
seqBind :: Bind CoreBndr -> ()
seqBind (NonRec b e) = seqBndr b `seq` seqExpr e
seqBind (Rec prs) = seqPairs prs
seqPairs :: [(CoreBndr, CoreExpr)] -> ()
seqPairs [] = ()
seqPairs ((b,e):prs) = seqBndr b `seq` seqExpr e `seq` seqPairs prs
seqAlts :: [CoreAlt] -> ()
seqAlts [] = ()
seqAlts ((c,bs,e):alts) = c `seq` seqBndrs bs `seq` seqExpr e `seq` seqAlts alts
seqRules :: [CoreRule] -> ()
seqRules [] = ()
seqRules (Rule { ru_bndrs = bndrs, ru_args = args, ru_rhs = rhs } : rules)
= seqBndrs bndrs `seq` seqExprs (rhs:args) `seq` seqRules rules
seqRules (BuiltinRule {} : rules) = seqRules rules
\end{code}
%************************************************************************
%* *
\subsection{Annotated core}
%* *
%************************************************************************
\begin{code}
type AnnExpr bndr annot = (annot, AnnExpr' bndr annot)
data AnnExpr' bndr annot
= AnnVar Id
| AnnLit Literal
| AnnLam bndr (AnnExpr bndr annot)
| AnnApp (AnnExpr bndr annot) (AnnExpr bndr annot)
| AnnCase (AnnExpr bndr annot) bndr Type [AnnAlt bndr annot]
| AnnLet (AnnBind bndr annot) (AnnExpr bndr annot)
| AnnCast (AnnExpr bndr annot) (annot, Coercion)
| AnnTick (Tickish Id) (AnnExpr bndr annot)
| AnnType Type
| AnnCoercion Coercion
type AnnAlt bndr annot = (AltCon, [bndr], AnnExpr bndr annot)
data AnnBind bndr annot
= AnnNonRec bndr (AnnExpr bndr annot)
| AnnRec [(bndr, AnnExpr bndr annot)]
\end{code}
\begin{code}
collectAnnArgs :: AnnExpr b a -> (AnnExpr b a, [AnnExpr b a])
collectAnnArgs expr
= go expr []
where
go (_, AnnApp f a) as = go f (a:as)
go e as = (e, as)
\end{code}
\begin{code}
deAnnotate :: AnnExpr bndr annot -> Expr bndr
deAnnotate (_, e) = deAnnotate' e
deAnnotate' :: AnnExpr' bndr annot -> Expr bndr
deAnnotate' (AnnType t) = Type t
deAnnotate' (AnnCoercion co) = Coercion co
deAnnotate' (AnnVar v) = Var v
deAnnotate' (AnnLit lit) = Lit lit
deAnnotate' (AnnLam binder body) = Lam binder (deAnnotate body)
deAnnotate' (AnnApp fun arg) = App (deAnnotate fun) (deAnnotate arg)
deAnnotate' (AnnCast e (_,co)) = Cast (deAnnotate e) co
deAnnotate' (AnnTick tick body) = Tick tick (deAnnotate body)
deAnnotate' (AnnLet bind body)
= Let (deAnnBind bind) (deAnnotate body)
where
deAnnBind (AnnNonRec var rhs) = NonRec var (deAnnotate rhs)
deAnnBind (AnnRec pairs) = Rec [(v,deAnnotate rhs) | (v,rhs) <- pairs]
deAnnotate' (AnnCase scrut v t alts)
= Case (deAnnotate scrut) v t (map deAnnAlt alts)
deAnnAlt :: AnnAlt bndr annot -> Alt bndr
deAnnAlt (con,args,rhs) = (con,args,deAnnotate rhs)
\end{code}
\begin{code}
collectAnnBndrs :: AnnExpr bndr annot -> ([bndr], AnnExpr bndr annot)
collectAnnBndrs e
= collect [] e
where
collect bs (_, AnnLam b body) = collect (b:bs) body
collect bs body = (reverse bs, body)
\end{code}