%
% (c) The University of Glasgow, 1994-2006
%
Core pass to saturate constructors and PrimOps
\begin{code}
module CorePrep (
corePrepPgm, corePrepExpr, cvtLitInteger,
lookupMkIntegerName,
) where
#include "HsVersions.h"
import OccurAnal
import HscTypes
import PrelNames
import CoreUtils
import CoreArity
import CoreFVs
import CoreMonad ( endPass, CoreToDo(..) )
import CoreSyn
import CoreSubst
import MkCore hiding( FloatBind(..) )
import Type
import Literal
import Coercion
import TcEnv
import TcRnMonad
import TyCon
import Demand
import Var
import VarSet
import VarEnv
import Id
import IdInfo
import TysWiredIn
import DataCon
import PrimOp
import BasicTypes
import Module
import UniqSupply
import Maybes
import OrdList
import ErrUtils
import DynFlags
import Util
import Pair
import Outputable
import Platform
import FastString
import Config
import Data.Bits
import Data.List ( mapAccumL )
import Control.Monad
\end{code}
-- ---------------------------------------------------------------------------
-- Overview
-- ---------------------------------------------------------------------------
The goal of this pass is to prepare for code generation.
1. Saturate constructor and primop applications.
2. Convert to A-normal form; that is, function arguments
are always variables.
* Use case for strict arguments:
f E ==> case E of x -> f x
(where f is strict)
* Use let for non-trivial lazy arguments
f E ==> let x = E in f x
(were f is lazy and x is non-trivial)
3. Similarly, convert any unboxed lets into cases.
[I'm experimenting with leaving 'ok-for-speculation'
rhss in let-form right up to this point.]
4. Ensure that *value* lambdas only occur as the RHS of a binding
(The code generator can't deal with anything else.)
Type lambdas are ok, however, because the code gen discards them.
5. [Not any more; nuked Jun 2002] Do the seq/par munging.
6. Clone all local Ids.
This means that all such Ids are unique, rather than the
weaker guarantee of no clashes which the simplifier provides.
And that is what the code generator needs.
We don't clone TyVars or CoVars. The code gen doesn't need that,
and doing so would be tiresome because then we'd need
to substitute in types and coercions.
7. Give each dynamic CCall occurrence a fresh unique; this is
rather like the cloning step above.
8. Inject bindings for the "implicit" Ids:
* Constructor wrappers
* Constructor workers
We want curried definitions for all of these in case they
aren't inlined by some caller.
9. Replace (lazy e) by e. See Note [lazyId magic] in MkId.lhs
10. Convert (LitInteger i t) into the core representation
for the Integer i. Normally this uses mkInteger, but if
we are using the integer-gmp implementation then there is a
special case where we use the S# constructor for Integers that
are in the range of Int.
This is all done modulo type applications and abstractions, so that
when type erasure is done for conversion to STG, we don't end up with
any trivial or useless bindings.
Invariants
~~~~~~~~~~
Here is the syntax of the Core produced by CorePrep:
Trivial expressions
triv ::= lit | var
| triv ty | /\a. triv
| truv co | /\c. triv | triv |> co
Applications
app ::= lit | var | app triv | app ty | app co | app |> co
Expressions
body ::= app
| let(rec) x = rhs in body -- Boxed only
| case body of pat -> body
| /\a. body | /\c. body
| body |> co
Right hand sides (only place where value lambdas can occur)
rhs ::= /\a.rhs | \x.rhs | body
We define a synonym for each of these non-terminals. Functions
with the corresponding name produce a result in that syntax.
\begin{code}
type CpeTriv = CoreExpr
type CpeApp = CoreExpr
type CpeBody = CoreExpr
type CpeRhs = CoreExpr
\end{code}
%************************************************************************
%* *
Top level stuff
%* *
%************************************************************************
\begin{code}
corePrepPgm :: DynFlags -> HscEnv -> CoreProgram -> [TyCon] -> IO CoreProgram
corePrepPgm dflags hsc_env binds data_tycons = do
showPass dflags "CorePrep"
us <- mkSplitUniqSupply 's'
initialCorePrepEnv <- mkInitialCorePrepEnv dflags hsc_env
let implicit_binds = mkDataConWorkers data_tycons
binds_out = initUs_ us $ do
floats1 <- corePrepTopBinds initialCorePrepEnv binds
floats2 <- corePrepTopBinds initialCorePrepEnv implicit_binds
return (deFloatTop (floats1 `appendFloats` floats2))
endPass dflags CorePrep binds_out []
return binds_out
corePrepExpr :: DynFlags -> HscEnv -> CoreExpr -> IO CoreExpr
corePrepExpr dflags hsc_env expr = do
showPass dflags "CorePrep"
us <- mkSplitUniqSupply 's'
initialCorePrepEnv <- mkInitialCorePrepEnv dflags hsc_env
let new_expr = initUs_ us (cpeBodyNF initialCorePrepEnv expr)
dumpIfSet_dyn dflags Opt_D_dump_prep "CorePrep" (ppr new_expr)
return new_expr
corePrepTopBinds :: CorePrepEnv -> [CoreBind] -> UniqSM Floats
corePrepTopBinds initialCorePrepEnv binds
= go initialCorePrepEnv binds
where
go _ [] = return emptyFloats
go env (bind : binds) = do (env', bind') <- cpeBind TopLevel env bind
binds' <- go env' binds
return (bind' `appendFloats` binds')
mkDataConWorkers :: [TyCon] -> [CoreBind]
mkDataConWorkers data_tycons
= [ NonRec id (Var id)
| tycon <- data_tycons,
data_con <- tyConDataCons tycon,
let id = dataConWorkId data_con ]
\end{code}
Note [Floating out of top level bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
NB: we do need to float out of top-level bindings
Consider x = length [True,False]
We want to get
s1 = False : []
s2 = True : s1
x = length s2
We return a *list* of bindings, because we may start with
x* = f (g y)
where x is demanded, in which case we want to finish with
a = g y
x* = f a
And then x will actually end up case-bound
Note [CafInfo and floating]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
What happens when we try to float bindings to the top level? At this
point all the CafInfo is supposed to be correct, and we must make certain
that is true of the new top-level bindings. There are two cases
to consider
a) The top-level binding is marked asCafRefs. In that case we are
basically fine. The floated bindings had better all be lazy lets,
so they can float to top level, but they'll all have HasCafRefs
(the default) which is safe.
b) The top-level binding is marked NoCafRefs. This really happens
Example. CoreTidy produces
$fApplicativeSTM [NoCafRefs] = D:Alternative retry# ...blah...
Now CorePrep has to eta-expand to
$fApplicativeSTM = let sat = \xy. retry x y
in D:Alternative sat ...blah...
So what we *want* is
sat [NoCafRefs] = \xy. retry x y
$fApplicativeSTM [NoCafRefs] = D:Alternative sat ...blah...
So, gruesomely, we must set the NoCafRefs flag on the sat bindings,
*and* substutite the modified 'sat' into the old RHS.
It should be the case that 'sat' is itself [NoCafRefs] (a value, no
cafs) else the original top-level binding would not itself have been
marked [NoCafRefs]. The DEBUG check in CoreToStg for
consistentCafInfo will find this.
This is all very gruesome and horrible. It would be better to figure
out CafInfo later, after CorePrep. We'll do that in due course.
Meanwhile this horrible hack works.
Note [Data constructor workers]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Create any necessary "implicit" bindings for data con workers. We
create the rather strange (non-recursive!) binding
$wC = \x y -> $wC x y
i.e. a curried constructor that allocates. This means that we can
treat the worker for a constructor like any other function in the rest
of the compiler. The point here is that CoreToStg will generate a
StgConApp for the RHS, rather than a call to the worker (which would
give a loop). As Lennart says: the ice is thin here, but it works.
Hmm. Should we create bindings for dictionary constructors? They are
always fully applied, and the bindings are just there to support
partial applications. But it's easier to let them through.
Note [Dead code in CorePrep]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Imagine that we got an input program like this (see Trac #4962):
f :: Show b => Int -> (Int, b -> Maybe Int -> Int)
f x = (g True (Just x) + g () (Just x), g)
where
g :: Show a => a -> Maybe Int -> Int
g _ Nothing = x
g y (Just z) = if z > 100 then g y (Just (z + length (show y))) else g y unknown
After specialisation and SpecConstr, we would get something like this:
f :: Show b => Int -> (Int, b -> Maybe Int -> Int)
f x = (g$Bool_True_Just x + g$Unit_Unit_Just x, g)
where
{-# RULES g $dBool = g$Bool
g $dUnit = g$Unit #-}
g = ...
{-# RULES forall x. g$Bool True (Just x) = g$Bool_True_Just x #-}
g$Bool = ...
{-# RULES forall x. g$Unit () (Just x) = g$Unit_Unit_Just x #-}
g$Unit = ...
g$Bool_True_Just = ...
g$Unit_Unit_Just = ...
Note that the g$Bool and g$Unit functions are actually dead code: they
are only kept alive by the occurrence analyser because they are
referred to by the rules of g, which is being kept alive by the fact
that it is used (unspecialised) in the returned pair.
However, at the CorePrep stage there is no way that the rules for g
will ever fire, and it really seems like a shame to produce an output
program that goes to the trouble of allocating a closure for the
unreachable g$Bool and g$Unit functions.
The way we fix this is to:
* In cloneBndr, drop all unfoldings/rules
* In deFloatTop, run a simple dead code analyser on each top-level
RHS to drop the dead local bindings. For that call to OccAnal, we
disable the binder swap, else the occurrence analyser sometimes
introduces new let bindings for cased binders, which lead to the bug
in #5433.
The reason we don't just OccAnal the whole output of CorePrep is that
the tidier ensures that all top-level binders are GlobalIds, so they
don't show up in the free variables any longer. So if you run the
occurrence analyser on the output of CoreTidy (or later) you e.g. turn
this program:
Rec {
f = ... f ...
}
Into this one:
f = ... f ...
(Since f is not considered to be free in its own RHS.)
%************************************************************************
%* *
The main code
%* *
%************************************************************************
\begin{code}
cpeBind :: TopLevelFlag -> CorePrepEnv -> CoreBind
-> UniqSM (CorePrepEnv, Floats)
cpeBind top_lvl env (NonRec bndr rhs)
= do { (_, bndr1) <- cpCloneBndr env bndr
; let dmd = idDemandInfo bndr
is_unlifted = isUnLiftedType (idType bndr)
; (floats, bndr2, rhs2) <- cpePair top_lvl NonRecursive
dmd
is_unlifted
env bndr1 rhs
; let new_float = mkFloat dmd is_unlifted bndr2 rhs2
; return (extendCorePrepEnv env bndr bndr2,
addFloat floats new_float) }
cpeBind top_lvl env (Rec pairs)
= do { let (bndrs,rhss) = unzip pairs
; (env', bndrs1) <- cpCloneBndrs env (map fst pairs)
; stuff <- zipWithM (cpePair top_lvl Recursive topDmd False env') bndrs1 rhss
; let (floats_s, bndrs2, rhss2) = unzip3 stuff
all_pairs = foldrOL add_float (bndrs2 `zip` rhss2)
(concatFloats floats_s)
; return (extendCorePrepEnvList env (bndrs `zip` bndrs2),
unitFloat (FloatLet (Rec all_pairs))) }
where
add_float (FloatLet (NonRec b r)) prs2 = (b,r) : prs2
add_float (FloatLet (Rec prs1)) prs2 = prs1 ++ prs2
add_float b _ = pprPanic "cpeBind" (ppr b)
cpePair :: TopLevelFlag -> RecFlag -> Demand -> Bool
-> CorePrepEnv -> Id -> CoreExpr
-> UniqSM (Floats, Id, CpeRhs)
cpePair top_lvl is_rec dmd is_unlifted env bndr rhs
= do { (floats1, rhs1) <- cpeRhsE env rhs
; (floats2, rhs2) <- float_from_rhs floats1 rhs1
; (floats3, rhs')
<- if manifestArity rhs1 <= arity
then return (floats2, cpeEtaExpand arity rhs2)
else WARN(True, text "CorePrep: silly extra arguments:" <+> ppr bndr)
(do { v <- newVar (idType bndr)
; let float = mkFloat topDmd False v rhs2
; return ( addFloat floats2 float
, cpeEtaExpand arity (Var v)) })
; let bndr' | exprIsHNF rhs' = bndr `setIdUnfolding` evaldUnfolding
| otherwise = bndr `setIdUnfolding` noUnfolding
; return (floats3, bndr', rhs') }
where
is_strict_or_unlifted = (isStrictDmd dmd) || is_unlifted
platform = targetPlatform (cpe_dynFlags env)
arity = idArity bndr
float_from_rhs floats rhs
| isEmptyFloats floats = return (emptyFloats, rhs)
| isTopLevel top_lvl = float_top floats rhs
| otherwise = float_nested floats rhs
float_nested floats rhs
| wantFloatNested is_rec is_strict_or_unlifted floats rhs
= return (floats, rhs)
| otherwise = dont_float floats rhs
float_top floats rhs
| mayHaveCafRefs (idCafInfo bndr)
, allLazyTop floats
= return (floats, rhs)
| Just (floats', rhs') <- canFloatFromNoCaf platform floats rhs
= return (floats', rhs')
| otherwise
= dont_float floats rhs
dont_float floats rhs
= do { body <- rhsToBodyNF rhs
; return (emptyFloats, wrapBinds floats body) }
cpeRhsE :: CorePrepEnv -> CoreExpr -> UniqSM (Floats, CpeRhs)
cpeRhsE _env expr@(Type {}) = return (emptyFloats, expr)
cpeRhsE _env expr@(Coercion {}) = return (emptyFloats, expr)
cpeRhsE env (Lit (LitInteger i _))
= cpeRhsE env (cvtLitInteger (cpe_dynFlags env) (getMkIntegerId env) i)
cpeRhsE _env expr@(Lit {}) = return (emptyFloats, expr)
cpeRhsE env expr@(Var {}) = cpeApp env expr
cpeRhsE env (Var f `App` _ `App` arg)
| f `hasKey` lazyIdKey
= cpeRhsE env arg
cpeRhsE env expr@(App {}) = cpeApp env expr
cpeRhsE env (Let bind expr)
= do { (env', new_binds) <- cpeBind NotTopLevel env bind
; (floats, body) <- cpeRhsE env' expr
; return (new_binds `appendFloats` floats, body) }
cpeRhsE env (Tick tickish expr)
| ignoreTickish tickish
= cpeRhsE env expr
| otherwise
= do { body <- cpeBodyNF env expr
; return (emptyFloats, Tick tickish' body) }
where
tickish' | Breakpoint n fvs <- tickish
= Breakpoint n (map (lookupCorePrepEnv env) fvs)
| otherwise
= tickish
cpeRhsE env (Cast expr co)
= do { (floats, expr') <- cpeRhsE env expr
; return (floats, Cast expr' co) }
cpeRhsE env expr@(Lam {})
= do { let (bndrs,body) = collectBinders expr
; (env', bndrs') <- cpCloneBndrs env bndrs
; body' <- cpeBodyNF env' body
; return (emptyFloats, mkLams bndrs' body') }
cpeRhsE env (Case scrut bndr ty alts)
= do { (floats, scrut') <- cpeBody env scrut
; let bndr1 = bndr `setIdUnfolding` evaldUnfolding
; (env', bndr2) <- cpCloneBndr env bndr1
; alts' <- mapM (sat_alt env') alts
; return (floats, Case scrut' bndr2 ty alts') }
where
sat_alt env (con, bs, rhs)
= do { (env2, bs') <- cpCloneBndrs env bs
; rhs' <- cpeBodyNF env2 rhs
; return (con, bs', rhs') }
cvtLitInteger :: DynFlags -> Id -> Integer -> CoreExpr
cvtLitInteger dflags mk_integer i
| cIntegerLibraryType == IntegerGMP
, inIntRange dflags i
= mkConApp integerGmpSDataCon [Lit (mkMachInt dflags i)]
| otherwise
= mkApps (Var mk_integer) [isNonNegative, ints]
where isNonNegative = if i < 0 then mkConApp falseDataCon []
else mkConApp trueDataCon []
ints = mkListExpr intTy (f (abs i))
f 0 = []
f x = let low = x .&. mask
high = x `shiftR` bits
in mkConApp intDataCon [Lit (mkMachInt dflags low)] : f high
bits = 31
mask = 2 ^ bits 1
cpeBodyNF :: CorePrepEnv -> CoreExpr -> UniqSM CpeBody
cpeBodyNF env expr
= do { (floats, body) <- cpeBody env expr
; return (wrapBinds floats body) }
cpeBody :: CorePrepEnv -> CoreExpr -> UniqSM (Floats, CpeBody)
cpeBody env expr
= do { (floats1, rhs) <- cpeRhsE env expr
; (floats2, body) <- rhsToBody rhs
; return (floats1 `appendFloats` floats2, body) }
rhsToBodyNF :: CpeRhs -> UniqSM CpeBody
rhsToBodyNF rhs = do { (floats,body) <- rhsToBody rhs
; return (wrapBinds floats body) }
rhsToBody :: CpeRhs -> UniqSM (Floats, CpeBody)
rhsToBody (Tick t expr)
| not (tickishScoped t)
= do { (floats, expr') <- rhsToBody expr
; return (floats, Tick t expr') }
rhsToBody (Cast e co)
= do { (floats, e') <- rhsToBody e
; return (floats, Cast e' co) }
rhsToBody expr@(Lam {})
| Just no_lam_result <- tryEtaReducePrep bndrs body
= return (emptyFloats, no_lam_result)
| all isTyVar bndrs
= return (emptyFloats, expr)
| otherwise
= do { fn <- newVar (exprType expr)
; let rhs = cpeEtaExpand (exprArity expr) expr
float = FloatLet (NonRec fn rhs)
; return (unitFloat float, Var fn) }
where
(bndrs,body) = collectBinders expr
rhsToBody expr = return (emptyFloats, expr)
cpeApp :: CorePrepEnv -> CoreExpr -> UniqSM (Floats, CpeRhs)
cpeApp env expr
= do { (app, (head,depth), _, floats, ss) <- collect_args expr 0
; MASSERT(null ss)
; case head of
Var fn_id -> do { sat_app <- maybeSaturate fn_id app depth
; return (floats, sat_app) }
_other -> return (floats, app) }
where
collect_args
:: CoreExpr
-> Int
-> UniqSM (CpeApp,
(CoreExpr,Int),
Type,
Floats,
[Demand])
collect_args (App fun arg@(Type arg_ty)) depth
= do { (fun',hd,fun_ty,floats,ss) <- collect_args fun depth
; return (App fun' arg, hd, applyTy fun_ty arg_ty, floats, ss) }
collect_args (App fun arg@(Coercion arg_co)) depth
= do { (fun',hd,fun_ty,floats,ss) <- collect_args fun depth
; return (App fun' arg, hd, applyCo fun_ty arg_co, floats, ss) }
collect_args (App fun arg) depth
= do { (fun',hd,fun_ty,floats,ss) <- collect_args fun (depth+1)
; let
(ss1, ss_rest) = case ss of
(ss1:ss_rest) -> (ss1, ss_rest)
[] -> (topDmd, [])
(arg_ty, res_ty) = expectJust "cpeBody:collect_args" $
splitFunTy_maybe fun_ty
; (fs, arg') <- cpeArg env ss1 arg arg_ty
; return (App fun' arg', hd, res_ty, fs `appendFloats` floats, ss_rest) }
collect_args (Var v) depth
= do { v1 <- fiddleCCall v
; let v2 = lookupCorePrepEnv env v1
; return (Var v2, (Var v2, depth), idType v2, emptyFloats, stricts) }
where
stricts = case idStrictness v of
StrictSig (DmdType _ demands _)
| listLengthCmp demands depth /= GT -> demands
| otherwise -> []
collect_args (Cast fun co) depth
= do { let Pair _ty1 ty2 = coercionKind co
; (fun', hd, _, floats, ss) <- collect_args fun depth
; return (Cast fun' co, hd, ty2, floats, ss) }
collect_args (Tick tickish fun) depth
| ignoreTickish tickish
= collect_args fun depth
collect_args fun depth
= do { (fun_floats, fun') <- cpeArg env evalDmd fun ty
; return (fun', (fun', depth), ty, fun_floats, []) }
where
ty = exprType fun
cpeArg :: CorePrepEnv -> Demand
-> CoreArg -> Type -> UniqSM (Floats, CpeTriv)
cpeArg env dmd arg arg_ty
= do { (floats1, arg1) <- cpeRhsE env arg
; (floats2, arg2) <- if want_float floats1 arg1
then return (floats1, arg1)
else do { body1 <- rhsToBodyNF arg1
; return (emptyFloats, wrapBinds floats1 body1) }
; if cpe_ExprIsTrivial arg2
then return (floats2, arg2)
else do
{ v <- newVar arg_ty
; let arg3 = cpeEtaExpand (exprArity arg2) arg2
arg_float = mkFloat dmd is_unlifted v arg3
; return (addFloat floats2 arg_float, varToCoreExpr v) } }
where
is_unlifted = isUnLiftedType arg_ty
is_strict = isStrictDmd dmd
want_float = wantFloatNested NonRecursive (is_strict || is_unlifted)
\end{code}
Note [Floating unlifted arguments]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider C (let v* = expensive in v)
where the "*" indicates "will be demanded". Usually v will have been
inlined by now, but let's suppose it hasn't (see Trac #2756). Then we
do *not* want to get
let v* = expensive in C v
because that has different strictness. Hence the use of 'allLazy'.
(NB: the let v* turns into a FloatCase, in mkLocalNonRec.)
------------------------------------------------------------------------------
-- Building the saturated syntax
-- ---------------------------------------------------------------------------
maybeSaturate deals with saturating primops and constructors
The type is the type of the entire application
\begin{code}
maybeSaturate :: Id -> CpeApp -> Int -> UniqSM CpeRhs
maybeSaturate fn expr n_args
| Just DataToTagOp <- isPrimOpId_maybe fn
= saturateDataToTag sat_expr
| hasNoBinding fn
= return sat_expr
| otherwise
= return expr
where
fn_arity = idArity fn
excess_arity = fn_arity n_args
sat_expr = cpeEtaExpand excess_arity expr
saturateDataToTag :: CpeApp -> UniqSM CpeApp
saturateDataToTag sat_expr
= do { let (eta_bndrs, eta_body) = collectBinders sat_expr
; eta_body' <- eval_data2tag_arg eta_body
; return (mkLams eta_bndrs eta_body') }
where
eval_data2tag_arg :: CpeApp -> UniqSM CpeBody
eval_data2tag_arg app@(fun `App` arg)
| exprIsHNF arg
= return app
| otherwise
= do { arg_id <- newVar (exprType arg)
; let arg_id1 = setIdUnfolding arg_id evaldUnfolding
; return (Case arg arg_id1 (exprType app)
[(DEFAULT, [], fun `App` Var arg_id1)]) }
eval_data2tag_arg (Tick t app)
= do { app' <- eval_data2tag_arg app
; return (Tick t app') }
eval_data2tag_arg other
= pprPanic "eval_data2tag" (ppr other)
\end{code}
Note [dataToTag magic]
~~~~~~~~~~~~~~~~~~~~~~
Horrid: we must ensure that the arg of data2TagOp is evaluated
(data2tag x) --> (case x of y -> data2tag y)
(yuk yuk) take into account the lambdas we've now introduced
How might it not be evaluated? Well, we might have floated it out
of the scope of a `seq`, or dropped the `seq` altogether.
%************************************************************************
%* *
Simple CoreSyn operations
%* *
%************************************************************************
\begin{code}
ignoreTickish :: Tickish Id -> Bool
ignoreTickish _ = False
cpe_ExprIsTrivial :: CoreExpr -> Bool
cpe_ExprIsTrivial (Var _) = True
cpe_ExprIsTrivial (Type _) = True
cpe_ExprIsTrivial (Coercion _) = True
cpe_ExprIsTrivial (Lit _) = True
cpe_ExprIsTrivial (App e arg) = isTypeArg arg && cpe_ExprIsTrivial e
cpe_ExprIsTrivial (Tick t e) = not (tickishIsCode t) && cpe_ExprIsTrivial e
cpe_ExprIsTrivial (Cast e _) = cpe_ExprIsTrivial e
cpe_ExprIsTrivial (Lam b body) | isTyVar b = cpe_ExprIsTrivial body
cpe_ExprIsTrivial _ = False
\end{code}
-- -----------------------------------------------------------------------------
-- Eta reduction
-- -----------------------------------------------------------------------------
Note [Eta expansion]
~~~~~~~~~~~~~~~~~~~~~
Eta expand to match the arity claimed by the binder Remember,
CorePrep must not change arity
Eta expansion might not have happened already, because it is done by
the simplifier only when there at least one lambda already.
NB1:we could refrain when the RHS is trivial (which can happen
for exported things). This would reduce the amount of code
generated (a little) and make things a little words for
code compiled without -O. The case in point is data constructor
wrappers.
NB2: we have to be careful that the result of etaExpand doesn't
invalidate any of the assumptions that CorePrep is attempting
to establish. One possible cause is eta expanding inside of
an SCC note - we're now careful in etaExpand to make sure the
SCC is pushed inside any new lambdas that are generated.
Note [Eta expansion and the CorePrep invariants]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It turns out to be much much easier to do eta expansion
*after* the main CorePrep stuff. But that places constraints
on the eta expander: given a CpeRhs, it must return a CpeRhs.
For example here is what we do not want:
f = /\a -> g (h 3) -- h has arity 2
After ANFing we get
f = /\a -> let s = h 3 in g s
and now we do NOT want eta expansion to give
f = /\a -> \ y -> (let s = h 3 in g s) y
Instead CoreArity.etaExpand gives
f = /\a -> \y -> let s = h 3 in g s y
\begin{code}
cpeEtaExpand :: Arity -> CpeRhs -> CpeRhs
cpeEtaExpand arity expr
| arity == 0 = expr
| otherwise = etaExpand arity expr
\end{code}
-- -----------------------------------------------------------------------------
-- Eta reduction
-- -----------------------------------------------------------------------------
Why try eta reduction? Hasn't the simplifier already done eta?
But the simplifier only eta reduces if that leaves something
trivial (like f, or f Int). But for deLam it would be enough to
get to a partial application:
case x of { p -> \xs. map f xs }
==> case x of { p -> map f }
\begin{code}
tryEtaReducePrep :: [CoreBndr] -> CoreExpr -> Maybe CoreExpr
tryEtaReducePrep bndrs expr@(App _ _)
| ok_to_eta_reduce f
, n_remaining >= 0
, and (zipWith ok bndrs last_args)
, not (any (`elemVarSet` fvs_remaining) bndrs)
, exprIsHNF remaining_expr
= Just remaining_expr
where
(f, args) = collectArgs expr
remaining_expr = mkApps f remaining_args
fvs_remaining = exprFreeVars remaining_expr
(remaining_args, last_args) = splitAt n_remaining args
n_remaining = length args length bndrs
ok bndr (Var arg) = bndr == arg
ok _ _ = False
ok_to_eta_reduce (Var f) = not (hasNoBinding f)
ok_to_eta_reduce _ = False
tryEtaReducePrep bndrs (Let bind@(NonRec _ r) body)
| not (any (`elemVarSet` fvs) bndrs)
= case tryEtaReducePrep bndrs body of
Just e -> Just (Let bind e)
Nothing -> Nothing
where
fvs = exprFreeVars r
tryEtaReducePrep _ _ = Nothing
\end{code}
%************************************************************************
%* *
Floats
%* *
%************************************************************************
Note [Pin demand info on floats]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We pin demand info on floated lets so that we can see the one-shot thunks.
\begin{code}
data FloatingBind
= FloatLet CoreBind
| FloatCase
Id CpeBody
Bool
data Floats = Floats OkToSpec (OrdList FloatingBind)
instance Outputable FloatingBind where
ppr (FloatLet b) = ppr b
ppr (FloatCase b r ok) = brackets (ppr ok) <+> ppr b <+> equals <+> ppr r
instance Outputable Floats where
ppr (Floats flag fs) = ptext (sLit "Floats") <> brackets (ppr flag) <+>
braces (vcat (map ppr (fromOL fs)))
instance Outputable OkToSpec where
ppr OkToSpec = ptext (sLit "OkToSpec")
ppr IfUnboxedOk = ptext (sLit "IfUnboxedOk")
ppr NotOkToSpec = ptext (sLit "NotOkToSpec")
data OkToSpec
= OkToSpec
| IfUnboxedOk
| NotOkToSpec
mkFloat :: Demand -> Bool -> Id -> CpeRhs -> FloatingBind
mkFloat dmd is_unlifted bndr rhs
| use_case = FloatCase bndr rhs (exprOkForSpeculation rhs)
| is_hnf = FloatLet (NonRec bndr rhs)
| otherwise = FloatLet (NonRec (setIdDemandInfo bndr dmd) rhs)
where
is_hnf = exprIsHNF rhs
is_strict = isStrictDmd dmd
use_case = is_unlifted || is_strict && not is_hnf
emptyFloats :: Floats
emptyFloats = Floats OkToSpec nilOL
isEmptyFloats :: Floats -> Bool
isEmptyFloats (Floats _ bs) = isNilOL bs
wrapBinds :: Floats -> CpeBody -> CpeBody
wrapBinds (Floats _ binds) body
= foldrOL mk_bind body binds
where
mk_bind (FloatCase bndr rhs _) body = Case rhs bndr (exprType body) [(DEFAULT, [], body)]
mk_bind (FloatLet bind) body = Let bind body
addFloat :: Floats -> FloatingBind -> Floats
addFloat (Floats ok_to_spec floats) new_float
= Floats (combine ok_to_spec (check new_float)) (floats `snocOL` new_float)
where
check (FloatLet _) = OkToSpec
check (FloatCase _ _ ok_for_spec)
| ok_for_spec = IfUnboxedOk
| otherwise = NotOkToSpec
unitFloat :: FloatingBind -> Floats
unitFloat = addFloat emptyFloats
appendFloats :: Floats -> Floats -> Floats
appendFloats (Floats spec1 floats1) (Floats spec2 floats2)
= Floats (combine spec1 spec2) (floats1 `appOL` floats2)
concatFloats :: [Floats] -> OrdList FloatingBind
concatFloats = foldr (\ (Floats _ bs1) bs2 -> appOL bs1 bs2) nilOL
combine :: OkToSpec -> OkToSpec -> OkToSpec
combine NotOkToSpec _ = NotOkToSpec
combine _ NotOkToSpec = NotOkToSpec
combine IfUnboxedOk _ = IfUnboxedOk
combine _ IfUnboxedOk = IfUnboxedOk
combine _ _ = OkToSpec
deFloatTop :: Floats -> [CoreBind]
deFloatTop (Floats _ floats)
= foldrOL get [] floats
where
get (FloatLet b) bs = occurAnalyseRHSs b : bs
get b _ = pprPanic "corePrepPgm" (ppr b)
occurAnalyseRHSs (NonRec x e) = NonRec x (occurAnalyseExpr_NoBinderSwap e)
occurAnalyseRHSs (Rec xes) = Rec [(x, occurAnalyseExpr_NoBinderSwap e) | (x, e) <- xes]
canFloatFromNoCaf :: Platform -> Floats -> CpeRhs -> Maybe (Floats, CpeRhs)
canFloatFromNoCaf platform (Floats ok_to_spec fs) rhs
| OkToSpec <- ok_to_spec
, Just (subst, fs') <- go (emptySubst, nilOL) (fromOL fs)
= Just (Floats OkToSpec fs', subst_expr subst rhs)
| otherwise
= Nothing
where
subst_expr = substExpr (text "CorePrep")
go :: (Subst, OrdList FloatingBind) -> [FloatingBind]
-> Maybe (Subst, OrdList FloatingBind)
go (subst, fbs_out) [] = Just (subst, fbs_out)
go (subst, fbs_out) (FloatLet (NonRec b r) : fbs_in)
| rhs_ok r
= go (subst', fbs_out `snocOL` new_fb) fbs_in
where
(subst', b') = set_nocaf_bndr subst b
new_fb = FloatLet (NonRec b' (subst_expr subst r))
go (subst, fbs_out) (FloatLet (Rec prs) : fbs_in)
| all rhs_ok rs
= go (subst', fbs_out `snocOL` new_fb) fbs_in
where
(bs,rs) = unzip prs
(subst', bs') = mapAccumL set_nocaf_bndr subst bs
rs' = map (subst_expr subst') rs
new_fb = FloatLet (Rec (bs' `zip` rs'))
go _ _ = Nothing
set_nocaf_bndr subst bndr
= (extendIdSubst subst bndr (Var bndr'), bndr')
where
bndr' = bndr `setIdCafInfo` NoCafRefs
rhs_ok :: CoreExpr -> Bool
rhs_ok = rhsIsStatic platform (\_ -> False)
wantFloatNested :: RecFlag -> Bool -> Floats -> CpeRhs -> Bool
wantFloatNested is_rec strict_or_unlifted floats rhs
= isEmptyFloats floats
|| strict_or_unlifted
|| (allLazyNested is_rec floats && exprIsHNF rhs)
allLazyTop :: Floats -> Bool
allLazyTop (Floats OkToSpec _) = True
allLazyTop _ = False
allLazyNested :: RecFlag -> Floats -> Bool
allLazyNested _ (Floats OkToSpec _) = True
allLazyNested _ (Floats NotOkToSpec _) = False
allLazyNested is_rec (Floats IfUnboxedOk _) = isNonRec is_rec
\end{code}
%************************************************************************
%* *
Cloning
%* *
%************************************************************************
\begin{code}
data CorePrepEnv = CPE {
cpe_dynFlags :: DynFlags,
cpe_env :: (IdEnv Id),
cpe_mkIntegerId :: Id
}
lookupMkIntegerName :: DynFlags -> HscEnv -> IO Id
lookupMkIntegerName dflags hsc_env
= if thisPackage dflags == primPackageId
then return $ panic "Can't use Integer in ghc-prim"
else if thisPackage dflags == integerPackageId
then return $ panic "Can't use Integer in integer"
else liftM tyThingId
$ initTcForLookup hsc_env (tcLookupGlobal mkIntegerName)
mkInitialCorePrepEnv :: DynFlags -> HscEnv -> IO CorePrepEnv
mkInitialCorePrepEnv dflags hsc_env
= do mkIntegerId <- lookupMkIntegerName dflags hsc_env
return $ CPE {
cpe_dynFlags = dflags,
cpe_env = emptyVarEnv,
cpe_mkIntegerId = mkIntegerId
}
extendCorePrepEnv :: CorePrepEnv -> Id -> Id -> CorePrepEnv
extendCorePrepEnv cpe id id'
= cpe { cpe_env = extendVarEnv (cpe_env cpe) id id' }
extendCorePrepEnvList :: CorePrepEnv -> [(Id,Id)] -> CorePrepEnv
extendCorePrepEnvList cpe prs
= cpe { cpe_env = extendVarEnvList (cpe_env cpe) prs }
lookupCorePrepEnv :: CorePrepEnv -> Id -> Id
lookupCorePrepEnv cpe id
= case lookupVarEnv (cpe_env cpe) id of
Nothing -> id
Just id' -> id'
getMkIntegerId :: CorePrepEnv -> Id
getMkIntegerId = cpe_mkIntegerId
cpCloneBndrs :: CorePrepEnv -> [Var] -> UniqSM (CorePrepEnv, [Var])
cpCloneBndrs env bs = mapAccumLM cpCloneBndr env bs
cpCloneBndr :: CorePrepEnv -> Var -> UniqSM (CorePrepEnv, Var)
cpCloneBndr env bndr
| isLocalId bndr, not (isCoVar bndr)
= do bndr' <- setVarUnique bndr <$> getUniqueM
let bndr'' = bndr' `setIdUnfolding` noUnfolding
`setIdSpecialisation` emptySpecInfo
return (extendCorePrepEnv env bndr bndr'', bndr'')
| otherwise
= return (env, bndr)
fiddleCCall :: Id -> UniqSM Id
fiddleCCall id
| isFCallId id = (id `setVarUnique`) <$> getUniqueM
| otherwise = return id
newVar :: Type -> UniqSM Id
newVar ty
= seqType ty `seq` do
uniq <- getUniqueM
return (mkSysLocal (fsLit "sat") uniq ty)
\end{code}