{-# LANGUAGE Safe #-}
{-# LANGUAGE CPP #-}

-----------------------------------------------------------------------------
-- |
-- Module      :  Data.Ratio
-- Copyright   :  (c) The University of Glasgow 2001
-- License     :  BSD-style (see the file libraries/base/LICENSE)
-- 
-- Maintainer  :  libraries@haskell.org
-- Stability   :  stable
-- Portability :  portable
--
-- Standard functions on rational numbers
--
-----------------------------------------------------------------------------

module Data.Ratio
    ( Ratio
    , Rational
    , (%)
    , numerator
    , denominator
    , approxRational

  ) where

import Prelude

#ifdef __GLASGOW_HASKELL__
import GHC.Real         -- The basic defns for Ratio
#endif

#ifdef __HUGS__
import Hugs.Prelude(Ratio(..), (%), numerator, denominator)
#endif

-- -----------------------------------------------------------------------------
-- approxRational

-- | 'approxRational', applied to two real fractional numbers @x@ and @epsilon@,
-- returns the simplest rational number within @epsilon@ of @x@.
-- A rational number @y@ is said to be /simpler/ than another @y'@ if
--
-- * @'abs' ('numerator' y) <= 'abs' ('numerator' y')@, and
--
-- * @'denominator' y <= 'denominator' y'@.
--
-- Any real interval contains a unique simplest rational;
-- in particular, note that @0\/1@ is the simplest rational of all.

-- Implementation details: Here, for simplicity, we assume a closed rational
-- interval.  If such an interval includes at least one whole number, then
-- the simplest rational is the absolutely least whole number.  Otherwise,
-- the bounds are of the form q%1 + r%d and q%1 + r'%d', where abs r < d
-- and abs r' < d', and the simplest rational is q%1 + the reciprocal of
-- the simplest rational between d'%r' and d%r.

approxRational          :: (RealFrac a) => a -> a -> Rational
approxRational rat eps  =  simplest (rat-eps) (rat+eps)
        where simplest x y | y < x      =  simplest y x
                           | x == y     =  xr
                           | x > 0      =  simplest' n d n' d'
                           | y < 0      =  - simplest' (-n') d' (-n) d
                           | otherwise  =  0 :% 1
                                        where xr  = toRational x
                                              n   = numerator xr
                                              d   = denominator xr
                                              nd' = toRational y
                                              n'  = numerator nd'
                                              d'  = denominator nd'

              simplest' n d n' d'       -- assumes 0 < n%d < n'%d'
                        | r == 0     =  q :% 1
                        | q /= q'    =  (q+1) :% 1
                        | otherwise  =  (q*n''+d'') :% n''
                                     where (q,r)      =  quotRem n d
                                           (q',r')    =  quotRem n' d'
                                           nd''       =  simplest' d' r' d r
                                           n''        =  numerator nd''
                                           d''        =  denominator nd''